Identifikasi dan Estimasi Runtun Waktu Model AR Menggunakan Algoritma Simulated Annealing

When fitting a Autoregressive (AR) model to real data, the correct model order and the model parameter often unknown. Our aim is to find estimators of the order and the parameter based on the data. In this paper the model identification and parameter estimation for AR model is posed within a Bayesia...

Full description

Bibliographic Details
Main Authors: Abdul Taram, suparman suparman
Format: Article
Language:Indonesian
Published: Universitas Islam Indonesia 2012-02-01
Series:Eksakta: Jurnal Ilmu-Ilmu MIPA
Online Access:http://journal.uii.ac.id/index.php/Eksakta/article/view/2393
id doaj-681904deb07742cf88cd24534fe8faf8
record_format Article
spelling doaj-681904deb07742cf88cd24534fe8faf82020-11-24T22:16:59ZindUniversitas Islam IndonesiaEksakta: Jurnal Ilmu-Ilmu MIPA1411-10472503-23642012-02-011122279Identifikasi dan Estimasi Runtun Waktu Model AR Menggunakan Algoritma Simulated AnnealingAbdul Taramsuparman suparmanWhen fitting a Autoregressive (AR) model to real data, the correct model order and the model parameter often unknown. Our aim is to find estimators of the order and the parameter based on the data. In this paper the model identification and parameter estimation for AR model is posed within a Bayesian framework. Within this framework the unknown order and parameter are assumed to be distributed according to a prior distribution, which incorporates all the available information about the process. All the information concerning the order and<br />parameter characterising the model is then contained in the posterior distribution. Obtaining the posterior model order probabilities and the posterior model parameter probabilities<br />requires integration of the resulting posterior distribution, an operation which is analytically intractable. Here stochastic simulated annealing algorithm is developed to perform the<br />required integration by simulating from the posterior distribution. The methods developed are evaluated in simulation studies on number of synthetic and real data sets.<br /><br /><strong>Keywords</strong> : simulated annealing, autoregressive, order identification, parameter estimation.http://journal.uii.ac.id/index.php/Eksakta/article/view/2393
collection DOAJ
language Indonesian
format Article
sources DOAJ
author Abdul Taram
suparman suparman
spellingShingle Abdul Taram
suparman suparman
Identifikasi dan Estimasi Runtun Waktu Model AR Menggunakan Algoritma Simulated Annealing
Eksakta: Jurnal Ilmu-Ilmu MIPA
author_facet Abdul Taram
suparman suparman
author_sort Abdul Taram
title Identifikasi dan Estimasi Runtun Waktu Model AR Menggunakan Algoritma Simulated Annealing
title_short Identifikasi dan Estimasi Runtun Waktu Model AR Menggunakan Algoritma Simulated Annealing
title_full Identifikasi dan Estimasi Runtun Waktu Model AR Menggunakan Algoritma Simulated Annealing
title_fullStr Identifikasi dan Estimasi Runtun Waktu Model AR Menggunakan Algoritma Simulated Annealing
title_full_unstemmed Identifikasi dan Estimasi Runtun Waktu Model AR Menggunakan Algoritma Simulated Annealing
title_sort identifikasi dan estimasi runtun waktu model ar menggunakan algoritma simulated annealing
publisher Universitas Islam Indonesia
series Eksakta: Jurnal Ilmu-Ilmu MIPA
issn 1411-1047
2503-2364
publishDate 2012-02-01
description When fitting a Autoregressive (AR) model to real data, the correct model order and the model parameter often unknown. Our aim is to find estimators of the order and the parameter based on the data. In this paper the model identification and parameter estimation for AR model is posed within a Bayesian framework. Within this framework the unknown order and parameter are assumed to be distributed according to a prior distribution, which incorporates all the available information about the process. All the information concerning the order and<br />parameter characterising the model is then contained in the posterior distribution. Obtaining the posterior model order probabilities and the posterior model parameter probabilities<br />requires integration of the resulting posterior distribution, an operation which is analytically intractable. Here stochastic simulated annealing algorithm is developed to perform the<br />required integration by simulating from the posterior distribution. The methods developed are evaluated in simulation studies on number of synthetic and real data sets.<br /><br /><strong>Keywords</strong> : simulated annealing, autoregressive, order identification, parameter estimation.
url http://journal.uii.ac.id/index.php/Eksakta/article/view/2393
work_keys_str_mv AT abdultaram identifikasidanestimasiruntunwaktumodelarmenggunakanalgoritmasimulatedannealing
AT suparmansuparman identifikasidanestimasiruntunwaktumodelarmenggunakanalgoritmasimulatedannealing
_version_ 1725787168571392000