An assessment of the performance of the logistic mixed model for analyzing binary traits in maize and sorghum diversity panels.
The logistic mixed model (LMM) is well-suited for the genome-wide association study (GWAS) of binary agronomic traits because it can include fixed and random effects that account for spurious associations. The recent implementation of a computationally efficient model fitting and testing approach no...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC6248992?pdf=render |
id |
doaj-680f5d4e852c437e849e6e65ddd2ee97 |
---|---|
record_format |
Article |
spelling |
doaj-680f5d4e852c437e849e6e65ddd2ee972020-11-24T22:18:40ZengPublic Library of Science (PLoS)PLoS ONE1932-62032018-01-011311e020775210.1371/journal.pone.0207752An assessment of the performance of the logistic mixed model for analyzing binary traits in maize and sorghum diversity panels.Esperanza ShenstoneJulian CooperBrian RiceMartin BohnTiffany M JamannAlexander E LipkaThe logistic mixed model (LMM) is well-suited for the genome-wide association study (GWAS) of binary agronomic traits because it can include fixed and random effects that account for spurious associations. The recent implementation of a computationally efficient model fitting and testing approach now makes it practical to use the LMM to search for markers associated with such binary traits on a genome-wide scale. Therefore, the purpose of this work was to assess the applicability of the LMM for GWAS in crop diversity panels. We dichotomized three publicly available quantitative traits in a maize diversity panel and two quantitative traits in a sorghum diversity panel, and them performed a GWAS using both the LMM and the unified mixed linear model (MLM) on these dichotomized traits. Our results suggest that the LMM is capable of identifying statistically significant marker-trait associations in the same genomic regions highlighted in previous studies, and this ability is consistent across both diversity panels. We also show how subpopulation structure in the maize diversity panel can underscore the LMM's superior control for spurious associations compared to the unified MLM. These results suggest that the LMM is a viable model to use for the GWAS of binary traits in crop diversity panels and we therefore encourage its broader implementation in the agronomic research community.http://europepmc.org/articles/PMC6248992?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Esperanza Shenstone Julian Cooper Brian Rice Martin Bohn Tiffany M Jamann Alexander E Lipka |
spellingShingle |
Esperanza Shenstone Julian Cooper Brian Rice Martin Bohn Tiffany M Jamann Alexander E Lipka An assessment of the performance of the logistic mixed model for analyzing binary traits in maize and sorghum diversity panels. PLoS ONE |
author_facet |
Esperanza Shenstone Julian Cooper Brian Rice Martin Bohn Tiffany M Jamann Alexander E Lipka |
author_sort |
Esperanza Shenstone |
title |
An assessment of the performance of the logistic mixed model for analyzing binary traits in maize and sorghum diversity panels. |
title_short |
An assessment of the performance of the logistic mixed model for analyzing binary traits in maize and sorghum diversity panels. |
title_full |
An assessment of the performance of the logistic mixed model for analyzing binary traits in maize and sorghum diversity panels. |
title_fullStr |
An assessment of the performance of the logistic mixed model for analyzing binary traits in maize and sorghum diversity panels. |
title_full_unstemmed |
An assessment of the performance of the logistic mixed model for analyzing binary traits in maize and sorghum diversity panels. |
title_sort |
assessment of the performance of the logistic mixed model for analyzing binary traits in maize and sorghum diversity panels. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2018-01-01 |
description |
The logistic mixed model (LMM) is well-suited for the genome-wide association study (GWAS) of binary agronomic traits because it can include fixed and random effects that account for spurious associations. The recent implementation of a computationally efficient model fitting and testing approach now makes it practical to use the LMM to search for markers associated with such binary traits on a genome-wide scale. Therefore, the purpose of this work was to assess the applicability of the LMM for GWAS in crop diversity panels. We dichotomized three publicly available quantitative traits in a maize diversity panel and two quantitative traits in a sorghum diversity panel, and them performed a GWAS using both the LMM and the unified mixed linear model (MLM) on these dichotomized traits. Our results suggest that the LMM is capable of identifying statistically significant marker-trait associations in the same genomic regions highlighted in previous studies, and this ability is consistent across both diversity panels. We also show how subpopulation structure in the maize diversity panel can underscore the LMM's superior control for spurious associations compared to the unified MLM. These results suggest that the LMM is a viable model to use for the GWAS of binary traits in crop diversity panels and we therefore encourage its broader implementation in the agronomic research community. |
url |
http://europepmc.org/articles/PMC6248992?pdf=render |
work_keys_str_mv |
AT esperanzashenstone anassessmentoftheperformanceofthelogisticmixedmodelforanalyzingbinarytraitsinmaizeandsorghumdiversitypanels AT juliancooper anassessmentoftheperformanceofthelogisticmixedmodelforanalyzingbinarytraitsinmaizeandsorghumdiversitypanels AT brianrice anassessmentoftheperformanceofthelogisticmixedmodelforanalyzingbinarytraitsinmaizeandsorghumdiversitypanels AT martinbohn anassessmentoftheperformanceofthelogisticmixedmodelforanalyzingbinarytraitsinmaizeandsorghumdiversitypanels AT tiffanymjamann anassessmentoftheperformanceofthelogisticmixedmodelforanalyzingbinarytraitsinmaizeandsorghumdiversitypanels AT alexanderelipka anassessmentoftheperformanceofthelogisticmixedmodelforanalyzingbinarytraitsinmaizeandsorghumdiversitypanels AT esperanzashenstone assessmentoftheperformanceofthelogisticmixedmodelforanalyzingbinarytraitsinmaizeandsorghumdiversitypanels AT juliancooper assessmentoftheperformanceofthelogisticmixedmodelforanalyzingbinarytraitsinmaizeandsorghumdiversitypanels AT brianrice assessmentoftheperformanceofthelogisticmixedmodelforanalyzingbinarytraitsinmaizeandsorghumdiversitypanels AT martinbohn assessmentoftheperformanceofthelogisticmixedmodelforanalyzingbinarytraitsinmaizeandsorghumdiversitypanels AT tiffanymjamann assessmentoftheperformanceofthelogisticmixedmodelforanalyzingbinarytraitsinmaizeandsorghumdiversitypanels AT alexanderelipka assessmentoftheperformanceofthelogisticmixedmodelforanalyzingbinarytraitsinmaizeandsorghumdiversitypanels |
_version_ |
1725782298469597184 |