An Individual and Model-Based Offspring Generation Strategy for Evolutionary Multiobjective Optimization
According to the Karush-Kuhn-Tucker condition, the Pareto set (PS) of a continuous m-objective optimization problem is a continuous (m-1)-D piecewise manifold. Based on this regularity property, the ratio of the sum of the first (m-1) largest eigenvalue of the population's covariance matrix to...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8668406/ |
id |
doaj-68022db2fef3463b8c6e2e45fc833320 |
---|---|
record_format |
Article |
spelling |
doaj-68022db2fef3463b8c6e2e45fc8333202021-03-29T22:58:04ZengIEEEIEEE Access2169-35362019-01-017346753468610.1109/ACCESS.2019.29042808668406An Individual and Model-Based Offspring Generation Strategy for Evolutionary Multiobjective OptimizationGuanjun Du0https://orcid.org/0000-0003-3596-913XGuoxiang Tong1Naixue Xiong2https://orcid.org/0000-0002-0394-4635Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, ChinaShanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, ChinaCollege of Intelligence and Computing, Tianjin University, Tianjin, ChinaAccording to the Karush-Kuhn-Tucker condition, the Pareto set (PS) of a continuous m-objective optimization problem is a continuous (m-1)-D piecewise manifold. Based on this regularity property, the ratio of the sum of the first (m-1) largest eigenvalue of the population's covariance matrix to the sum of the whole eigenvalue can be employed to illustrate the degree of convergence of the population. This paper proposes a new algorithm, named DE/RM-MEDA, which hybridizes differential evolution (DE) and estimation of distribution algorithm (EDA) for multiobjective optimization problems (MOPs) with the complicated PS. In the proposed algorithm, EDA extracts the population distribution information to sample new trial solutions by establishing a probability model, while DE uses the individual information to create others new individuals through the mutation and crossover operators. At each generation, the number of new solutions generated by the two operators is adjusted by the above-defined ratio. The proposed algorithm is validated on nine tec09 problems. The sensitivity and the scalability have also been experimentally investigated in this paper. The comparison results between DE/RM-MEDA and the other two state-of-the-art evolutionary algorithms, namely NSGA-II-DE and RM-MEDA, show that the proposed algorithm is highly competitive algorithms for solving MOPs with complicated PSs in terms of convergence and diversity metrics.https://ieeexplore.ieee.org/document/8668406/Differential evolutionestimation of distribution algorithmhybrid algorithmreproduction operators |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Guanjun Du Guoxiang Tong Naixue Xiong |
spellingShingle |
Guanjun Du Guoxiang Tong Naixue Xiong An Individual and Model-Based Offspring Generation Strategy for Evolutionary Multiobjective Optimization IEEE Access Differential evolution estimation of distribution algorithm hybrid algorithm reproduction operators |
author_facet |
Guanjun Du Guoxiang Tong Naixue Xiong |
author_sort |
Guanjun Du |
title |
An Individual and Model-Based Offspring Generation Strategy for Evolutionary Multiobjective Optimization |
title_short |
An Individual and Model-Based Offspring Generation Strategy for Evolutionary Multiobjective Optimization |
title_full |
An Individual and Model-Based Offspring Generation Strategy for Evolutionary Multiobjective Optimization |
title_fullStr |
An Individual and Model-Based Offspring Generation Strategy for Evolutionary Multiobjective Optimization |
title_full_unstemmed |
An Individual and Model-Based Offspring Generation Strategy for Evolutionary Multiobjective Optimization |
title_sort |
individual and model-based offspring generation strategy for evolutionary multiobjective optimization |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2019-01-01 |
description |
According to the Karush-Kuhn-Tucker condition, the Pareto set (PS) of a continuous m-objective optimization problem is a continuous (m-1)-D piecewise manifold. Based on this regularity property, the ratio of the sum of the first (m-1) largest eigenvalue of the population's covariance matrix to the sum of the whole eigenvalue can be employed to illustrate the degree of convergence of the population. This paper proposes a new algorithm, named DE/RM-MEDA, which hybridizes differential evolution (DE) and estimation of distribution algorithm (EDA) for multiobjective optimization problems (MOPs) with the complicated PS. In the proposed algorithm, EDA extracts the population distribution information to sample new trial solutions by establishing a probability model, while DE uses the individual information to create others new individuals through the mutation and crossover operators. At each generation, the number of new solutions generated by the two operators is adjusted by the above-defined ratio. The proposed algorithm is validated on nine tec09 problems. The sensitivity and the scalability have also been experimentally investigated in this paper. The comparison results between DE/RM-MEDA and the other two state-of-the-art evolutionary algorithms, namely NSGA-II-DE and RM-MEDA, show that the proposed algorithm is highly competitive algorithms for solving MOPs with complicated PSs in terms of convergence and diversity metrics. |
topic |
Differential evolution estimation of distribution algorithm hybrid algorithm reproduction operators |
url |
https://ieeexplore.ieee.org/document/8668406/ |
work_keys_str_mv |
AT guanjundu anindividualandmodelbasedoffspringgenerationstrategyforevolutionarymultiobjectiveoptimization AT guoxiangtong anindividualandmodelbasedoffspringgenerationstrategyforevolutionarymultiobjectiveoptimization AT naixuexiong anindividualandmodelbasedoffspringgenerationstrategyforevolutionarymultiobjectiveoptimization AT guanjundu individualandmodelbasedoffspringgenerationstrategyforevolutionarymultiobjectiveoptimization AT guoxiangtong individualandmodelbasedoffspringgenerationstrategyforevolutionarymultiobjectiveoptimization AT naixuexiong individualandmodelbasedoffspringgenerationstrategyforevolutionarymultiobjectiveoptimization |
_version_ |
1724190433512259584 |