Field identification of morphological and physiological traits in two special mutants with strong tolerance and high sensitivity to drought stress in upland rice (Oryza sativa L.)
The two mutants idr1-1 and 297-28, which were obtained from the radiation mutation of HD297 and IAPAR9, were used as experimental materials in this study for a 2-year (2012 and 2013) experiment about field drought resistance identification in Beijing, China. Key agronomic traits and water-related ph...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-05-01
|
Series: | Journal of Integrative Agriculture |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2095311918619094 |
id |
doaj-67f8ae63add8438cae8c8c22f1098d77 |
---|---|
record_format |
Article |
spelling |
doaj-67f8ae63add8438cae8c8c22f1098d772021-06-08T04:39:50ZengElsevierJournal of Integrative Agriculture2095-31192019-05-01185970981Field identification of morphological and physiological traits in two special mutants with strong tolerance and high sensitivity to drought stress in upland rice (Oryza sativa L.)Min HUANG0Yu-hui XU1Hua-qi WANG2College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P.R. ChinaCollege of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P.R. ChinaCorrespondence WANG Hua-qi, Tel/Fax: +86-10-62733712; College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P.R. ChinaThe two mutants idr1-1 and 297-28, which were obtained from the radiation mutation of HD297 and IAPAR9, were used as experimental materials in this study for a 2-year (2012 and 2013) experiment about field drought resistance identification in Beijing, China. Key agronomic traits and water-related physiological indexes were observed and measured, including the leaf anti-dead level (LADL), days to heading, plant height, setting percentage, aboveground biomass, leaf water potential (LWP), net photosynthetic rate (Pn) and transpiration rate. The results showed that the mutant idr1-1 that was under drought stress (DS) conditions for 2 years had the highest LADL grades (1.3 and 2.0) among all the materials, and they were 2–3 grades stronger than the wild-type IAPAR9 with an average that was 21.4% higher for the setting percentage than the wild type. Compared with the IAPAR9 for the 2-year average delay in the days to heading and the reduction rates in the plant height, setting percentage, and aboveground biomass under DS compared with the well-watered (WW) treatment, idr1-1 showed 3.2% less delay and 19.1, 16.4, and 6.1% less reduction, respectively. The idr1-1 in the LWP always exhibited the highest performance among all the materials. The Pn of idr1-1 under severe and mild DS comparing with that under WW was slightly decreased and even slightly increased, respectively, leading to an average reduction rate of only 0.92%, which was 26.93% less than that of IAPAR9. Under the severe DS, idr1-1 still showed the highest value of 16.88 μmol CO2 m−2 s−1 among all the materials and was significantly higher than that of IAPAR9 (11.66 μmol CO2 m−2 s−1). Furthermore, only idr1-1 had the increased and the highest transpiration rate values (7.6 and 6.04 mmol H2O m−2 s−1) under both mild and severe DS compared with the values under WW, when the transpiration rate of all the other materials significantly decreased. By contrast, the 297-28 in terms of the LADL grade under DS was the lowest (7.0), and it was four grades weaker than its wild-type HD297 and even one grade weaker than the drought-sensitive paddy rice SN265. For the 2-year average reduction rates in aboveground biomass and plant heights under DS compared with those under the WW, 297-28 was 31.6 and 31.8% higher than HD297, respectively. Meanwhile, 297-28 showed the worst performance for the LWP, Pn, and transpiration rate. These results suggest that idr1-1 might be a superior drought tolerant mutant of upland rice found in China. It has a strong ability to maintain and even enhance leaf transpiration while maintaining a high plant water potential under DS, thus supporting a high Pn and alleviating the delay in agronomic trait development and yield loss effectively. 297-28 is a much more highly drought-sensitive mutant that is even more sensitive than paddy rice varieties. The two mutants could be used as drought tolerance controls for rice germplasm identification and the drought resistant mechanism studies in the future. idr1-1 is also suitable for breeding drought-tolerant and lodging-resistant high-yield rice varieties.http://www.sciencedirect.com/science/article/pii/S2095311918619094rice mutantsmorphological and physiological traitsdrought resistancefield identification |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Min HUANG Yu-hui XU Hua-qi WANG |
spellingShingle |
Min HUANG Yu-hui XU Hua-qi WANG Field identification of morphological and physiological traits in two special mutants with strong tolerance and high sensitivity to drought stress in upland rice (Oryza sativa L.) Journal of Integrative Agriculture rice mutants morphological and physiological traits drought resistance field identification |
author_facet |
Min HUANG Yu-hui XU Hua-qi WANG |
author_sort |
Min HUANG |
title |
Field identification of morphological and physiological traits in two special mutants with strong tolerance and high sensitivity to drought stress in upland rice (Oryza sativa L.) |
title_short |
Field identification of morphological and physiological traits in two special mutants with strong tolerance and high sensitivity to drought stress in upland rice (Oryza sativa L.) |
title_full |
Field identification of morphological and physiological traits in two special mutants with strong tolerance and high sensitivity to drought stress in upland rice (Oryza sativa L.) |
title_fullStr |
Field identification of morphological and physiological traits in two special mutants with strong tolerance and high sensitivity to drought stress in upland rice (Oryza sativa L.) |
title_full_unstemmed |
Field identification of morphological and physiological traits in two special mutants with strong tolerance and high sensitivity to drought stress in upland rice (Oryza sativa L.) |
title_sort |
field identification of morphological and physiological traits in two special mutants with strong tolerance and high sensitivity to drought stress in upland rice (oryza sativa l.) |
publisher |
Elsevier |
series |
Journal of Integrative Agriculture |
issn |
2095-3119 |
publishDate |
2019-05-01 |
description |
The two mutants idr1-1 and 297-28, which were obtained from the radiation mutation of HD297 and IAPAR9, were used as experimental materials in this study for a 2-year (2012 and 2013) experiment about field drought resistance identification in Beijing, China. Key agronomic traits and water-related physiological indexes were observed and measured, including the leaf anti-dead level (LADL), days to heading, plant height, setting percentage, aboveground biomass, leaf water potential (LWP), net photosynthetic rate (Pn) and transpiration rate. The results showed that the mutant idr1-1 that was under drought stress (DS) conditions for 2 years had the highest LADL grades (1.3 and 2.0) among all the materials, and they were 2–3 grades stronger than the wild-type IAPAR9 with an average that was 21.4% higher for the setting percentage than the wild type. Compared with the IAPAR9 for the 2-year average delay in the days to heading and the reduction rates in the plant height, setting percentage, and aboveground biomass under DS compared with the well-watered (WW) treatment, idr1-1 showed 3.2% less delay and 19.1, 16.4, and 6.1% less reduction, respectively. The idr1-1 in the LWP always exhibited the highest performance among all the materials. The Pn of idr1-1 under severe and mild DS comparing with that under WW was slightly decreased and even slightly increased, respectively, leading to an average reduction rate of only 0.92%, which was 26.93% less than that of IAPAR9. Under the severe DS, idr1-1 still showed the highest value of 16.88 μmol CO2 m−2 s−1 among all the materials and was significantly higher than that of IAPAR9 (11.66 μmol CO2 m−2 s−1). Furthermore, only idr1-1 had the increased and the highest transpiration rate values (7.6 and 6.04 mmol H2O m−2 s−1) under both mild and severe DS compared with the values under WW, when the transpiration rate of all the other materials significantly decreased. By contrast, the 297-28 in terms of the LADL grade under DS was the lowest (7.0), and it was four grades weaker than its wild-type HD297 and even one grade weaker than the drought-sensitive paddy rice SN265. For the 2-year average reduction rates in aboveground biomass and plant heights under DS compared with those under the WW, 297-28 was 31.6 and 31.8% higher than HD297, respectively. Meanwhile, 297-28 showed the worst performance for the LWP, Pn, and transpiration rate. These results suggest that idr1-1 might be a superior drought tolerant mutant of upland rice found in China. It has a strong ability to maintain and even enhance leaf transpiration while maintaining a high plant water potential under DS, thus supporting a high Pn and alleviating the delay in agronomic trait development and yield loss effectively. 297-28 is a much more highly drought-sensitive mutant that is even more sensitive than paddy rice varieties. The two mutants could be used as drought tolerance controls for rice germplasm identification and the drought resistant mechanism studies in the future. idr1-1 is also suitable for breeding drought-tolerant and lodging-resistant high-yield rice varieties. |
topic |
rice mutants morphological and physiological traits drought resistance field identification |
url |
http://www.sciencedirect.com/science/article/pii/S2095311918619094 |
work_keys_str_mv |
AT minhuang fieldidentificationofmorphologicalandphysiologicaltraitsintwospecialmutantswithstrongtoleranceandhighsensitivitytodroughtstressinuplandriceoryzasatival AT yuhuixu fieldidentificationofmorphologicalandphysiologicaltraitsintwospecialmutantswithstrongtoleranceandhighsensitivitytodroughtstressinuplandriceoryzasatival AT huaqiwang fieldidentificationofmorphologicalandphysiologicaltraitsintwospecialmutantswithstrongtoleranceandhighsensitivitytodroughtstressinuplandriceoryzasatival |
_version_ |
1721390483573309440 |