Nonlinear elliptic equations and systems with linear part at resonance

The famous result of Landesman and Lazer [10] dealt with resonance at a simple eigenvalue. Soon after publication of [10], Williams [14] gave an extension for repeated eigenvalues. The conditions in Williams [14] are rather restrictive, and no examples were ever given. We show that seemingly d...

Full description

Bibliographic Details
Main Author: Philip Korman
Format: Article
Language:English
Published: Texas State University 2016-03-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2016/67/abstr.html
Description
Summary:The famous result of Landesman and Lazer [10] dealt with resonance at a simple eigenvalue. Soon after publication of [10], Williams [14] gave an extension for repeated eigenvalues. The conditions in Williams [14] are rather restrictive, and no examples were ever given. We show that seemingly different classical result by Lazer and Leach [11], on forced harmonic oscillators at resonance, provides an example for this theorem. The article by Williams [14] also contained a shorter proof. We use a similar approach to study resonance for 2X2 systems. We derive conditions for existence of solutions, which turned out to depend on the spectral properties of the linear part.
ISSN:1072-6691