A novel digital approach to describe real world outcomes among patients with constipation

Abstract Understanding day-to-day variations in symptoms and medication management can be important in describing patient centered outcomes for people with constipation. Patient Generated Health Data (PGHD) from digital devices is a potential solution, but its utility as a tool for describing experi...

Full description

Bibliographic Details
Main Authors: Allison Shapiro, Benjamin Bradshaw, Sabine Landes, Petra Kammann, Beatrice Bois De Fer, Wei-Nchih Lee, Robert Lange
Format: Article
Language:English
Published: Nature Publishing Group 2021-02-01
Series:npj Digital Medicine
Online Access:https://doi.org/10.1038/s41746-021-00391-x
id doaj-67ed60946e0c49aaa9cfab1e265d9701
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Allison Shapiro
Benjamin Bradshaw
Sabine Landes
Petra Kammann
Beatrice Bois De Fer
Wei-Nchih Lee
Robert Lange
spellingShingle Allison Shapiro
Benjamin Bradshaw
Sabine Landes
Petra Kammann
Beatrice Bois De Fer
Wei-Nchih Lee
Robert Lange
A novel digital approach to describe real world outcomes among patients with constipation
npj Digital Medicine
author_facet Allison Shapiro
Benjamin Bradshaw
Sabine Landes
Petra Kammann
Beatrice Bois De Fer
Wei-Nchih Lee
Robert Lange
author_sort Allison Shapiro
title A novel digital approach to describe real world outcomes among patients with constipation
title_short A novel digital approach to describe real world outcomes among patients with constipation
title_full A novel digital approach to describe real world outcomes among patients with constipation
title_fullStr A novel digital approach to describe real world outcomes among patients with constipation
title_full_unstemmed A novel digital approach to describe real world outcomes among patients with constipation
title_sort novel digital approach to describe real world outcomes among patients with constipation
publisher Nature Publishing Group
series npj Digital Medicine
issn 2398-6352
publishDate 2021-02-01
description Abstract Understanding day-to-day variations in symptoms and medication management can be important in describing patient centered outcomes for people with constipation. Patient Generated Health Data (PGHD) from digital devices is a potential solution, but its utility as a tool for describing experiences of people with frequent constipation is unknown. We conducted a virtual, 16-week prospective study of individuals with frequent constipation from an online wellness platform that connects mobile consumer digital devices including wearable monitors capable of passively collecting steps, sleep, and heart rate data. Participants wore a Fitbit monitoring device for the study duration and were administered daily and monthly surveys assessing constipation symptom severity and medication usage. A set of 38 predetermined day-level behavioral activity metrics were computed from minute-level data streams for steps, sleep and heart rate. Mixed effects regression models were used to compare activity metrics between constipation status (irregular or constipated vs. regular day), medication use (medication day vs. non-medication day) and the interaction of medication day with irregular or constipation days, as well as to model likelihood to treat with constipation medications based on daily self-reported symptom severity. Correction for multiple comparisons was performed with the Benjamini–Hochberg procedure for false discovery rate. This study analyzed 1540 enrolled participants with completed daily surveys (mean age 36.6 sd 10.0, 72.8% female, 88.8% Caucasian). Of those, 1293 completed all monthly surveys and 756 had sufficient Fitbit data density for analysis of activity metrics. At a daily-level, 22 of the 38 activity metrics were significantly associated with bowel movement or medication treatment patterns for constipation. Participants were measured to have fewer steps on irregular days compared to regular days (−200 steps, 95% CI [−280, −120]), longer periods of inactivity on constipated days (9.1 min, 95% CI [5.2, 12.9]), reduced total sleep time on irregular and constipated days (−2.4 min, 95% CI [−4.3, −0.4] and −4.0 min, 95% CI [−6.5, −1.4], respectively). Participants reported greater severity of symptoms for bloating, hard stool, difficulty passing, and painful bowel movements on irregular, constipation and medication days compared to regular days with no medication. Interaction analysis of medication days with irregular or constipation days observed small increases in severity compared to non-medication days. Participants were 4.3% (95% CI 3.2, 5.3) more likely to treat with medication on constipated days versus regular. No significant increase in likelihood was observed for irregular days. Daily likelihood to treat increased for each 1-point change in symptom severity of bloating (2.4%, 95% CI [2.0, 2.7]), inability to pass (2.2%, 95% CI [1.4, 3.0]) and incomplete bowel movements (1.3%, 95% CI [0.9, 1.7]). This is the first large scale virtual prospective study describing the association between passively collected PGHD and constipation symptoms and severity at a day-to-day granularity level. Constipation status, irregular or constipated, was associated with a number of activity metrics in steps and sleep, and likelihood to treat with medication increased with increasing severity for a number of constipation symptoms. Given the small magnitude of effect, further research is needed to understand the clinical relevance of these results. PGHD may be useful as a tool for describing real world patient centered experiences for people with constipation.
url https://doi.org/10.1038/s41746-021-00391-x
work_keys_str_mv AT allisonshapiro anoveldigitalapproachtodescriberealworldoutcomesamongpatientswithconstipation
AT benjaminbradshaw anoveldigitalapproachtodescriberealworldoutcomesamongpatientswithconstipation
AT sabinelandes anoveldigitalapproachtodescriberealworldoutcomesamongpatientswithconstipation
AT petrakammann anoveldigitalapproachtodescriberealworldoutcomesamongpatientswithconstipation
AT beatriceboisdefer anoveldigitalapproachtodescriberealworldoutcomesamongpatientswithconstipation
AT weinchihlee anoveldigitalapproachtodescriberealworldoutcomesamongpatientswithconstipation
AT robertlange anoveldigitalapproachtodescriberealworldoutcomesamongpatientswithconstipation
AT allisonshapiro noveldigitalapproachtodescriberealworldoutcomesamongpatientswithconstipation
AT benjaminbradshaw noveldigitalapproachtodescriberealworldoutcomesamongpatientswithconstipation
AT sabinelandes noveldigitalapproachtodescriberealworldoutcomesamongpatientswithconstipation
AT petrakammann noveldigitalapproachtodescriberealworldoutcomesamongpatientswithconstipation
AT beatriceboisdefer noveldigitalapproachtodescriberealworldoutcomesamongpatientswithconstipation
AT weinchihlee noveldigitalapproachtodescriberealworldoutcomesamongpatientswithconstipation
AT robertlange noveldigitalapproachtodescriberealworldoutcomesamongpatientswithconstipation
_version_ 1724257807670181888
spelling doaj-67ed60946e0c49aaa9cfab1e265d97012021-02-21T12:42:00ZengNature Publishing Groupnpj Digital Medicine2398-63522021-02-01411910.1038/s41746-021-00391-xA novel digital approach to describe real world outcomes among patients with constipationAllison Shapiro0Benjamin Bradshaw1Sabine Landes2Petra Kammann3Beatrice Bois De Fer4Wei-Nchih Lee5Robert Lange6Evidation HealthEvidation HealthSanofi-Aventis, Consumer HealthcareSanofi-Aventis, Consumer HealthcareSanofi-Aventis Groupe, Global CHC Scientific & Clinical PlatformsEvidation HealthSanofi-Aventis, Consumer HealthcareAbstract Understanding day-to-day variations in symptoms and medication management can be important in describing patient centered outcomes for people with constipation. Patient Generated Health Data (PGHD) from digital devices is a potential solution, but its utility as a tool for describing experiences of people with frequent constipation is unknown. We conducted a virtual, 16-week prospective study of individuals with frequent constipation from an online wellness platform that connects mobile consumer digital devices including wearable monitors capable of passively collecting steps, sleep, and heart rate data. Participants wore a Fitbit monitoring device for the study duration and were administered daily and monthly surveys assessing constipation symptom severity and medication usage. A set of 38 predetermined day-level behavioral activity metrics were computed from minute-level data streams for steps, sleep and heart rate. Mixed effects regression models were used to compare activity metrics between constipation status (irregular or constipated vs. regular day), medication use (medication day vs. non-medication day) and the interaction of medication day with irregular or constipation days, as well as to model likelihood to treat with constipation medications based on daily self-reported symptom severity. Correction for multiple comparisons was performed with the Benjamini–Hochberg procedure for false discovery rate. This study analyzed 1540 enrolled participants with completed daily surveys (mean age 36.6 sd 10.0, 72.8% female, 88.8% Caucasian). Of those, 1293 completed all monthly surveys and 756 had sufficient Fitbit data density for analysis of activity metrics. At a daily-level, 22 of the 38 activity metrics were significantly associated with bowel movement or medication treatment patterns for constipation. Participants were measured to have fewer steps on irregular days compared to regular days (−200 steps, 95% CI [−280, −120]), longer periods of inactivity on constipated days (9.1 min, 95% CI [5.2, 12.9]), reduced total sleep time on irregular and constipated days (−2.4 min, 95% CI [−4.3, −0.4] and −4.0 min, 95% CI [−6.5, −1.4], respectively). Participants reported greater severity of symptoms for bloating, hard stool, difficulty passing, and painful bowel movements on irregular, constipation and medication days compared to regular days with no medication. Interaction analysis of medication days with irregular or constipation days observed small increases in severity compared to non-medication days. Participants were 4.3% (95% CI 3.2, 5.3) more likely to treat with medication on constipated days versus regular. No significant increase in likelihood was observed for irregular days. Daily likelihood to treat increased for each 1-point change in symptom severity of bloating (2.4%, 95% CI [2.0, 2.7]), inability to pass (2.2%, 95% CI [1.4, 3.0]) and incomplete bowel movements (1.3%, 95% CI [0.9, 1.7]). This is the first large scale virtual prospective study describing the association between passively collected PGHD and constipation symptoms and severity at a day-to-day granularity level. Constipation status, irregular or constipated, was associated with a number of activity metrics in steps and sleep, and likelihood to treat with medication increased with increasing severity for a number of constipation symptoms. Given the small magnitude of effect, further research is needed to understand the clinical relevance of these results. PGHD may be useful as a tool for describing real world patient centered experiences for people with constipation.https://doi.org/10.1038/s41746-021-00391-x