Quantum Gravity Strategy for the Production of Dark Matter Using Cavitation by Minimum Entropy

The minimum entropy is responsible for the formation of dark matter bubbles in a black hole, while the variation in the density of dark matter allows these bubbles to leave the event horizon. Some experimental evidence supports the dark matter production model in the inner vicinity of the border of...

Full description

Bibliographic Details
Main Authors: Edward Jiménez, Esteban E. Jimenez
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Proceedings
Subjects:
n/a
Online Access:https://www.mdpi.com/2504-3900/46/1/31
id doaj-67c872a13d56443c973f2cae4a389f4e
record_format Article
spelling doaj-67c872a13d56443c973f2cae4a389f4e2020-11-25T03:10:52ZengMDPI AGProceedings2504-39002020-07-0146313110.3390/ecea-5-06664Quantum Gravity Strategy for the Production of Dark Matter Using Cavitation by Minimum EntropyEdward Jiménez0Esteban E. Jimenez1Faculty of Chemical Engineering, Central University of Ecuador (UCE), Gerónimo Leiton S/N y Gatto Sobral. Telf (5932) 2524766, Quito 170521, EcuadorInstitut National des Sciences et Techniques Nucléaires, 91400 Saclay, FranceThe minimum entropy is responsible for the formation of dark matter bubbles in a black hole, while the variation in the density of dark matter allows these bubbles to leave the event horizon. Some experimental evidence supports the dark matter production model in the inner vicinity of the border of a black hole. The principle of minima entropy explains how cavitation occurs on the event horizon, which in turn complies with the Navier–Stokes 3D equations. Moreover, current works in an axiomatic way show that in the event horizon Einstein’s equations are equivalent to Navier–Stokes’ equations. Thus, The solutions of Einstein combined with the boundary conditions establish a one-to-one correspondence with solutions of incompressible Navier–Stokes and in the near-horizon limit it provides a precise mathematical sense in which horizons are always incompressible fluids. It is also essential to understand that Cavitation by minimum entropy is the production of dark matter bubbles, by variation of the pressure inside or on the horizon of a black hole, in general <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Δ</mi> <mi>p</mi> <mo>=</mo> <msub> <mi>p</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>−</mo> <msub> <mi>p</mi> <mi>n</mi> </msub> <mo>=</mo> <mfenced separators="" open="(" close=")"> <mfrac> <msub> <mi>σ</mi> <mi>n</mi> </msub> <msub> <mi>σ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>−</mo> <mn>1</mn> </mfenced> <msub> <mi>p</mi> <mi>n</mi> </msub> </mrow> </semantics> </math> </inline-formula> or in particular <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Δ</mi> <mi>p</mi> <mo>=</mo> <mo>−</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>−</mo> <mi>P</mi> <mo>)</mo> </mrow> <msub> <mi>p</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mrow> <mi>∂</mi> <mi>P</mi> </mrow> <mrow> <mi>∂</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mi>Δ</mi> <mi>p</mi> </mrow> <msub> <mi>ρ</mi> <mn>0</mn> </msub> </mfrac> <mi>P</mi> </mrow> </semantics> </math> </inline-formula>. Finally, fluctuations in the density of dark matter can facilitate its escape from a black hole, if and only if there is previously dark matter produced by cavitation inside or on the horizon of a black hole and also <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>ρ</mi> <mrow> <mi>D</mi> <mi>M</mi> </mrow> </msub> <mo><</mo> <msub> <mi>ρ</mi> <mi>B</mi> </msub> <mo>.</mo> </mrow> </semantics> </math> </inline-formula>https://www.mdpi.com/2504-3900/46/1/31n/a
collection DOAJ
language English
format Article
sources DOAJ
author Edward Jiménez
Esteban E. Jimenez
spellingShingle Edward Jiménez
Esteban E. Jimenez
Quantum Gravity Strategy for the Production of Dark Matter Using Cavitation by Minimum Entropy
Proceedings
n/a
author_facet Edward Jiménez
Esteban E. Jimenez
author_sort Edward Jiménez
title Quantum Gravity Strategy for the Production of Dark Matter Using Cavitation by Minimum Entropy
title_short Quantum Gravity Strategy for the Production of Dark Matter Using Cavitation by Minimum Entropy
title_full Quantum Gravity Strategy for the Production of Dark Matter Using Cavitation by Minimum Entropy
title_fullStr Quantum Gravity Strategy for the Production of Dark Matter Using Cavitation by Minimum Entropy
title_full_unstemmed Quantum Gravity Strategy for the Production of Dark Matter Using Cavitation by Minimum Entropy
title_sort quantum gravity strategy for the production of dark matter using cavitation by minimum entropy
publisher MDPI AG
series Proceedings
issn 2504-3900
publishDate 2020-07-01
description The minimum entropy is responsible for the formation of dark matter bubbles in a black hole, while the variation in the density of dark matter allows these bubbles to leave the event horizon. Some experimental evidence supports the dark matter production model in the inner vicinity of the border of a black hole. The principle of minima entropy explains how cavitation occurs on the event horizon, which in turn complies with the Navier–Stokes 3D equations. Moreover, current works in an axiomatic way show that in the event horizon Einstein’s equations are equivalent to Navier–Stokes’ equations. Thus, The solutions of Einstein combined with the boundary conditions establish a one-to-one correspondence with solutions of incompressible Navier–Stokes and in the near-horizon limit it provides a precise mathematical sense in which horizons are always incompressible fluids. It is also essential to understand that Cavitation by minimum entropy is the production of dark matter bubbles, by variation of the pressure inside or on the horizon of a black hole, in general <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Δ</mi> <mi>p</mi> <mo>=</mo> <msub> <mi>p</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>−</mo> <msub> <mi>p</mi> <mi>n</mi> </msub> <mo>=</mo> <mfenced separators="" open="(" close=")"> <mfrac> <msub> <mi>σ</mi> <mi>n</mi> </msub> <msub> <mi>σ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>−</mo> <mn>1</mn> </mfenced> <msub> <mi>p</mi> <mi>n</mi> </msub> </mrow> </semantics> </math> </inline-formula> or in particular <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Δ</mi> <mi>p</mi> <mo>=</mo> <mo>−</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>−</mo> <mi>P</mi> <mo>)</mo> </mrow> <msub> <mi>p</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mrow> <mi>∂</mi> <mi>P</mi> </mrow> <mrow> <mi>∂</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mi>Δ</mi> <mi>p</mi> </mrow> <msub> <mi>ρ</mi> <mn>0</mn> </msub> </mfrac> <mi>P</mi> </mrow> </semantics> </math> </inline-formula>. Finally, fluctuations in the density of dark matter can facilitate its escape from a black hole, if and only if there is previously dark matter produced by cavitation inside or on the horizon of a black hole and also <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>ρ</mi> <mrow> <mi>D</mi> <mi>M</mi> </mrow> </msub> <mo><</mo> <msub> <mi>ρ</mi> <mi>B</mi> </msub> <mo>.</mo> </mrow> </semantics> </math> </inline-formula>
topic n/a
url https://www.mdpi.com/2504-3900/46/1/31
work_keys_str_mv AT edwardjimenez quantumgravitystrategyfortheproductionofdarkmatterusingcavitationbyminimumentropy
AT estebanejimenez quantumgravitystrategyfortheproductionofdarkmatterusingcavitationbyminimumentropy
_version_ 1724656798314528768