Summary: | Air quality networks need revision and optimisation as instruments and network requirements, both scientific and societal, evolve over time. Assessing and optimising the information content of a monitoring network is a non-trivial problem. Here, we introduce a methodology formulated in a variational framework using an air quality model to simulate the dispersion of carbon monoxide (CO) as a passive tracer at the city scale. We address the specific case of adding or removing stations, and the more general situation of optimally distributing a given number of stations in a domain taking into account transport patterns and spatial factors such as population density and emission patterns. We consider three quality indicators: precision gain, information gain and degrees of freedom for a signal. These metrics are all functions of the singular values of the sensitivity matrix that links emissions and observations in the variational framework. We illustrate the application of the methodology in the case of Santiago (33.5°S, 70.5°W, 500 m a.s.l.), a city of ca. 7 million inhabitants with significant pollution levels. We deem information gain as the best of the above indicators for this case. We then quantify the actual evolution of Santiago's network and compare it with the optimal configuration suggested by our methodology and with results previously obtained using a statistical approach. The application is restricted to diurnal and summer conditions, for which the dispersion model shows a good agreement with observations. The current method offers advantages in that it allows extending a network to include new sites, and it explicitly considers the effects of dispersion patterns, and desired weighting functions such as emission fluxes and population density. We find that Santiago's air quality has improved two-fold since 1988, regarding CO under diurnal summer conditions. Still, according to our results, the current configuration could be improved by integrating more suburban stations in the southwest of the basin.
|