Summary: | This paper focuses on the 60 GHz band, which is known to be very attractive for enabling next-generation abundant multi-Gbps wireless connectivity in 5G communication. We propose a novel concept of a double-layer antenna, loosely inspired from standard log-periodic schemes but with an aperiodic geometry, reduced size, and a limited number of elements while achieving excellent performance over the entire 60 GHz band. To maximize the antenna’s efficiency, we have developed a design that differs from those traditionally used for millimeter-wave communication applications. We aim to simultaneously maximize the gain, efficiency, and bandwidth. The reflection coefficient of the proposed design achieves a bandwidth of 20.66% from 53.9 GHz up to 66.3 GHz, covering the entire frequency band of interest. In addition, this proposed structure achieves a maximum realized gain of 11.8 dBi with an estimated radiation efficiency of 91.2%. The proposed antenna is simulated, fabricated, and tested in an anechoic chamber environment. The measurement data show a reasonable agreement with the simulation results, with respect to the bandwidth, gain, and side-lobe level over the operational spectrum.
|