A General Stroke-Based Model for the Straightening Process of D-type Shaft

D-type shaft is widely used in precision machinery products such as motors and intelligent robots. The straightness of the D-type shaft is an important factor influencing its machining accuracy and dynamic performance, which is normally improved by the three-point pressure straightening process. Thi...

Full description

Bibliographic Details
Main Authors: Hong Lu, Yue Zang, Xinbao Zhang, Yongquan Zhang, Le Li
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Processes
Subjects:
Online Access:https://www.mdpi.com/2227-9717/8/5/528
Description
Summary:D-type shaft is widely used in precision machinery products such as motors and intelligent robots. The straightness of the D-type shaft is an important factor influencing its machining accuracy and dynamic performance, which is normally improved by the three-point pressure straightening process. This paper proposes a general stroke-based model to predict the relevant parameters for the straightening process of D-type shaft, considering the bending deformations in three dimensions. The distribution of stress and strain inside the D-type shaft during the straightening process in arbitrary position of the cross section and the bending moment are analyzed by using linear hardening material model. The relationship between deflection and the internal stress on the loading position is explored, and a straightening stroke model of D-type shaft is obtained. The correctness of the stroke-based straightening model has been validated by finite element method (FEM) simulation analysis and bending experiments. The results show that the proposed model can improve the accuracy and efficiency of the D-type shaft straightening process. Furthermore, it provides a novel method for the modelling of the straightening process regarding the special shaped bar stock.
ISSN:2227-9717