Real-Time Intelligent Recognition Method for Horizontal Well Marker Bed

The accurate identification of the horizontal well marker bed is to guarantee the soft landing of the well trajectory. With the intelligent development of the petroleum industry, it is feasible to apply computers to identify the marker bed automatically. In case-based reasoning technology, the data...

Full description

Bibliographic Details
Main Authors: Xuning Wu, Qian Li, Hu Yin, Zaoyuan Li, Jianhua Jiang, Menghan Si, Yangyang Zhang
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2020/8583943
Description
Summary:The accurate identification of the horizontal well marker bed is to guarantee the soft landing of the well trajectory. With the intelligent development of the petroleum industry, it is feasible to apply computers to identify the marker bed automatically. In case-based reasoning technology, the data of well logging while drilling (LWD) as characteristic parameters are compared with those of adjacent well. By taking the depth sequence of LWD data as time series and using Dynamic Time Warping (DTW) similarity measure algorithm, the similarity index of each drilling depth is calculated corresponding to the marker bed in the adjacent well. The total similarity curve is obtained by giving different weights of different feature parameters. Selecting natural gamma, deep resistivity, and shallow resistivity LWD curves as characteristic parameters, two horizontal wells in JL block of Junggar basin are analysed by this method. The result of similarity curve indicates the location of the marker bed and the total similarity value reaches 78%. The research shows that the method based on case-based reasoning can identify the marker bed of the horizontal well accurately and effectively, assist the geologist to carry out formation correlation of multiple wells at the same time, reduce the cost of human labour force, and improve work efficiency.
ISSN:1024-123X
1563-5147