Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolution

<p>Abstract</p> <p>Background</p> <p>Genome comparisons have made possible the reconstruction of the eutherian ancestral karyotype but also have the potential to provide new insights into the evolutionary inter-relationship of the different eutherian orders within the m...

Full description

Bibliographic Details
Main Authors: Högel Josef, Froenicke Lutz, Cooper David N, Kohn Matthias, Kemkemer Claus, Hameister Horst, Kehrer-Sawatzki Hildegard
Format: Article
Language:English
Published: BMC 2009-04-01
Series:BMC Evolutionary Biology
Online Access:http://www.biomedcentral.com/1471-2148/9/84
id doaj-6794b4d5d63d4099829dc3f767d66d79
record_format Article
spelling doaj-6794b4d5d63d4099829dc3f767d66d792021-09-02T16:29:06ZengBMCBMC Evolutionary Biology1471-21482009-04-01918410.1186/1471-2148-9-84Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolutionHögel JosefFroenicke LutzCooper David NKohn MatthiasKemkemer ClausHameister HorstKehrer-Sawatzki Hildegard<p>Abstract</p> <p>Background</p> <p>Genome comparisons have made possible the reconstruction of the eutherian ancestral karyotype but also have the potential to provide new insights into the evolutionary inter-relationship of the different eutherian orders within the mammalian phylogenetic tree. Such comparisons can additionally reveal (i) the nature of the DNA sequences present within the evolutionary breakpoint regions and (ii) whether or not the evolutionary breakpoints occur randomly across the genome. Gene synteny analysis (E-painting) not only greatly reduces the complexity of comparative genome sequence analysis but also extends its evolutionary reach.</p> <p>Results</p> <p>E-painting was used to compare the genome sequences of six different mammalian species and chicken. A total of 526 evolutionary breakpoint intervals were identified and these were mapped to a median resolution of 120 kb, the highest level of resolution so far obtained. A marked correlation was noted between evolutionary breakpoint frequency and gene density. This correlation was significant not only at the chromosomal level but also sub-chromosomally when comparing genome intervals of lengths as short as 40 kb. Contrary to previous findings, a comparison of evolutionary breakpoint locations with the chromosomal positions of well mapped common fragile sites and cancer-associated breakpoints failed to reveal any evidence for significant co-location. Primate-specific chromosomal rearrangements were however found to occur preferentially in regions containing segmental duplications and copy number variants.</p> <p>Conclusion</p> <p>Specific chromosomal regions appear to be prone to recurring rearrangement in different mammalian lineages ('breakpoint reuse') even if the breakpoints themselves are likely to be non-identical. The putative ancestral eutherian genome, reconstructed on the basis of the synteny analysis of 7 vertebrate genome sequences, not only confirmed the results of previous molecular cytogenetic studies but also increased the definition of the inferred structure of ancestral eutherian chromosomes. For the first time in such an analysis, the opossum was included as an outgroup species. This served to confirm our previous model of the ancestral eutherian genome since all ancestral syntenic segment associations were also noted in this marsupial.</p> http://www.biomedcentral.com/1471-2148/9/84
collection DOAJ
language English
format Article
sources DOAJ
author Högel Josef
Froenicke Lutz
Cooper David N
Kohn Matthias
Kemkemer Claus
Hameister Horst
Kehrer-Sawatzki Hildegard
spellingShingle Högel Josef
Froenicke Lutz
Cooper David N
Kohn Matthias
Kemkemer Claus
Hameister Horst
Kehrer-Sawatzki Hildegard
Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolution
BMC Evolutionary Biology
author_facet Högel Josef
Froenicke Lutz
Cooper David N
Kohn Matthias
Kemkemer Claus
Hameister Horst
Kehrer-Sawatzki Hildegard
author_sort Högel Josef
title Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolution
title_short Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolution
title_full Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolution
title_fullStr Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolution
title_full_unstemmed Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolution
title_sort gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolution
publisher BMC
series BMC Evolutionary Biology
issn 1471-2148
publishDate 2009-04-01
description <p>Abstract</p> <p>Background</p> <p>Genome comparisons have made possible the reconstruction of the eutherian ancestral karyotype but also have the potential to provide new insights into the evolutionary inter-relationship of the different eutherian orders within the mammalian phylogenetic tree. Such comparisons can additionally reveal (i) the nature of the DNA sequences present within the evolutionary breakpoint regions and (ii) whether or not the evolutionary breakpoints occur randomly across the genome. Gene synteny analysis (E-painting) not only greatly reduces the complexity of comparative genome sequence analysis but also extends its evolutionary reach.</p> <p>Results</p> <p>E-painting was used to compare the genome sequences of six different mammalian species and chicken. A total of 526 evolutionary breakpoint intervals were identified and these were mapped to a median resolution of 120 kb, the highest level of resolution so far obtained. A marked correlation was noted between evolutionary breakpoint frequency and gene density. This correlation was significant not only at the chromosomal level but also sub-chromosomally when comparing genome intervals of lengths as short as 40 kb. Contrary to previous findings, a comparison of evolutionary breakpoint locations with the chromosomal positions of well mapped common fragile sites and cancer-associated breakpoints failed to reveal any evidence for significant co-location. Primate-specific chromosomal rearrangements were however found to occur preferentially in regions containing segmental duplications and copy number variants.</p> <p>Conclusion</p> <p>Specific chromosomal regions appear to be prone to recurring rearrangement in different mammalian lineages ('breakpoint reuse') even if the breakpoints themselves are likely to be non-identical. The putative ancestral eutherian genome, reconstructed on the basis of the synteny analysis of 7 vertebrate genome sequences, not only confirmed the results of previous molecular cytogenetic studies but also increased the definition of the inferred structure of ancestral eutherian chromosomes. For the first time in such an analysis, the opossum was included as an outgroup species. This served to confirm our previous model of the ancestral eutherian genome since all ancestral syntenic segment associations were also noted in this marsupial.</p>
url http://www.biomedcentral.com/1471-2148/9/84
work_keys_str_mv AT hogeljosef genesyntenycomparisonsbetweendifferentvertebratesprovidenewinsightsintobreakageandfusioneventsduringmammaliankaryotypeevolution
AT froenickelutz genesyntenycomparisonsbetweendifferentvertebratesprovidenewinsightsintobreakageandfusioneventsduringmammaliankaryotypeevolution
AT cooperdavidn genesyntenycomparisonsbetweendifferentvertebratesprovidenewinsightsintobreakageandfusioneventsduringmammaliankaryotypeevolution
AT kohnmatthias genesyntenycomparisonsbetweendifferentvertebratesprovidenewinsightsintobreakageandfusioneventsduringmammaliankaryotypeevolution
AT kemkemerclaus genesyntenycomparisonsbetweendifferentvertebratesprovidenewinsightsintobreakageandfusioneventsduringmammaliankaryotypeevolution
AT hameisterhorst genesyntenycomparisonsbetweendifferentvertebratesprovidenewinsightsintobreakageandfusioneventsduringmammaliankaryotypeevolution
AT kehrersawatzkihildegard genesyntenycomparisonsbetweendifferentvertebratesprovidenewinsightsintobreakageandfusioneventsduringmammaliankaryotypeevolution
_version_ 1721172875495342080