A Study of K-ISMS Fault Analysis for Constructing Secure Internet of Things Service

Although Internet of Things (IoT) technologies and services are being developed rapidly worldwide, concerns of potential security threats such as privacy violation, information leak, and hacking are increasing as more various sensors are connected to the Internet. There is a need for the study of in...

Full description

Bibliographic Details
Main Authors: Hwankuk Kim, Jongin Lim, Kyungho Lee
Format: Article
Language:English
Published: SAGE Publishing 2015-09-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1155/2015/474329
Description
Summary:Although Internet of Things (IoT) technologies and services are being developed rapidly worldwide, concerns of potential security threats such as privacy violation, information leak, and hacking are increasing as more various sensors are connected to the Internet. There is a need for the study of introducing risk management and existing security management standard (e.g., ISO27001) to ensure the stability and reliability of IoT services. K-ISMS is a representative certification system that evaluates the security management level of the enterprise in Korea and is possible to apply as a standardized process to enhance the security management of IoT services. However, there are growing concerns about the quality deterioration of the K-ISMS certification assessment these days because of internet security incidents occurring frequently in K-ISMS certified enterprises. Therefore, various researches are required to improve the accuracy and objectivity of the certification assessment. Since existing studies mainly focus on simple statistical analysis of the K-ISMS assessment results, analysis on the cause of certification assessment fault based on past data analysis is insufficient. As a method of managing the certification inspection quality, in this paper, we analyze the association among the fault items of the K-ISMS certification assessment results using association rule mining which involves identifying an association rule among items in the database.
ISSN:1550-1477