Calculations of the complex network’s steady-state modes by brining it to equivalent open

The paper considers the development of the idea of diakoptics as applied to the calculation of the steady-state modes of energy system’s complex electrical networks. The well-known goal of diakoptics is to obtain the equations of state for the dedicated part of the system, the study of which is much...

Full description

Bibliographic Details
Main Authors: Akhmetbayev Dauren, Zhantlessova Assemgul, Akhmetbayev Arman
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:E3S Web of Conferences
Online Access:https://doi.org/10.1051/e3sconf/20185802022
Description
Summary:The paper considers the development of the idea of diakoptics as applied to the calculation of the steady-state modes of energy system’s complex electrical networks. The well-known goal of diakoptics is to obtain the equations of state for the dedicated part of the system, the study of which is much simpler than the study of the initial system and can be achieved by improving its steady state equations. Technique for dividing a complex-closed system into a set of uncomplicated subsystems was developed based on the inverse form of nodal equations. Analytic expressions for the intersection circuits obtained based on identical equality of voltage at the nodes of the system division into subsystems are proposed. Using the example of 110kV network calculation, the technique for determining the matrixes of generalized parameters of the dedicated subsystems, the sizes of which depend on the number of their broken link is shown. Analytical determination of the equality condition of the voltage of subsystems intersections nodes, allowed analyzing a complex closed network by bringing it to an equivalent open.
ISSN:2267-1242