Preliminary Investigation on Crop Growth, Physiology, and Yield of Rice under Partial Root-Zone Irrigation

Rice is a staple food predominantly consumed by more than half of the global population. Water deficit is a crucial threat to produce rice globally. Prevailing water-saving techniques for rice can reduce water inputs but are not widely adopted due to the high yield penalty. Partial root-zone irrigat...

Full description

Bibliographic Details
Main Authors: Theivasigamani Parthasarathi, A. R. Nirmal kumar, Koothan Vanitha
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:International Journal of Agronomy
Online Access:http://dx.doi.org/10.1155/2020/8898141
id doaj-6783c6724ecb4a408ac0a2bdccadca82
record_format Article
spelling doaj-6783c6724ecb4a408ac0a2bdccadca822020-12-07T09:08:27ZengHindawi LimitedInternational Journal of Agronomy1687-81591687-81672020-01-01202010.1155/2020/88981418898141Preliminary Investigation on Crop Growth, Physiology, and Yield of Rice under Partial Root-Zone IrrigationTheivasigamani Parthasarathi0A. R. Nirmal kumar1Koothan Vanitha2Crop Physiology and Genomics Lab, VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, Tamil Nadu, IndiaRegional Agricultural Research Station (RARS), Tirupati, IndiaDepartment of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, IndiaRice is a staple food predominantly consumed by more than half of the global population. Water deficit is a crucial threat to produce rice globally. Prevailing water-saving techniques for rice can reduce water inputs but are not widely adopted due to the high yield penalty. Partial root-zone irrigation (PRI) is an innovative water-saving technique that allows simultaneous wet and dry areas within the root zone. We hypothesized that optimized PRI improves the water use and reduces the yield penalty of rice. A split root experiment was conducted on rice grown in pots with six defined PRI treatments, that is, PRI1, PRI2, PRI3, PRI4, PRI5, and PRI6. Half of the root system was wetted and alternated between halves with one- (PRI1), two- (PRI2), three- (PRI3), four- (PRI4), five- (PRI5), and six- (PRI6) day intervals. Conventionally irrigated rice plants where the whole root zone of rice was wetted and grown in the nonsplit pot were maintained and considered as control. Control and PRI treatments were irrigated based on 100% potential evapotranspiration demand (ETc). In particular, one PRI treatment (PRI3) showed a remarkable increase in active roots and leaf photosynthesis (PN) by wet and dry cycles within the root zone. Distinctive shoot responses of rice under PRI indicated enriched physiological responses for superior water productivity. The third-day-interval partial root-zone irrigation (PRI3) and conventional irrigation had similar leaf water potential (Ψleaf), while PRI3 had higher grain yield than conventional treatment and higher root surface area that may have compensated for the moderate level of stress in PRI. The finding that PRI scheduled at three-day intervals (PRI3) was superior to conventional irrigation for a single rice plant is promising and needs to be tested and adapted to field conditions.http://dx.doi.org/10.1155/2020/8898141
collection DOAJ
language English
format Article
sources DOAJ
author Theivasigamani Parthasarathi
A. R. Nirmal kumar
Koothan Vanitha
spellingShingle Theivasigamani Parthasarathi
A. R. Nirmal kumar
Koothan Vanitha
Preliminary Investigation on Crop Growth, Physiology, and Yield of Rice under Partial Root-Zone Irrigation
International Journal of Agronomy
author_facet Theivasigamani Parthasarathi
A. R. Nirmal kumar
Koothan Vanitha
author_sort Theivasigamani Parthasarathi
title Preliminary Investigation on Crop Growth, Physiology, and Yield of Rice under Partial Root-Zone Irrigation
title_short Preliminary Investigation on Crop Growth, Physiology, and Yield of Rice under Partial Root-Zone Irrigation
title_full Preliminary Investigation on Crop Growth, Physiology, and Yield of Rice under Partial Root-Zone Irrigation
title_fullStr Preliminary Investigation on Crop Growth, Physiology, and Yield of Rice under Partial Root-Zone Irrigation
title_full_unstemmed Preliminary Investigation on Crop Growth, Physiology, and Yield of Rice under Partial Root-Zone Irrigation
title_sort preliminary investigation on crop growth, physiology, and yield of rice under partial root-zone irrigation
publisher Hindawi Limited
series International Journal of Agronomy
issn 1687-8159
1687-8167
publishDate 2020-01-01
description Rice is a staple food predominantly consumed by more than half of the global population. Water deficit is a crucial threat to produce rice globally. Prevailing water-saving techniques for rice can reduce water inputs but are not widely adopted due to the high yield penalty. Partial root-zone irrigation (PRI) is an innovative water-saving technique that allows simultaneous wet and dry areas within the root zone. We hypothesized that optimized PRI improves the water use and reduces the yield penalty of rice. A split root experiment was conducted on rice grown in pots with six defined PRI treatments, that is, PRI1, PRI2, PRI3, PRI4, PRI5, and PRI6. Half of the root system was wetted and alternated between halves with one- (PRI1), two- (PRI2), three- (PRI3), four- (PRI4), five- (PRI5), and six- (PRI6) day intervals. Conventionally irrigated rice plants where the whole root zone of rice was wetted and grown in the nonsplit pot were maintained and considered as control. Control and PRI treatments were irrigated based on 100% potential evapotranspiration demand (ETc). In particular, one PRI treatment (PRI3) showed a remarkable increase in active roots and leaf photosynthesis (PN) by wet and dry cycles within the root zone. Distinctive shoot responses of rice under PRI indicated enriched physiological responses for superior water productivity. The third-day-interval partial root-zone irrigation (PRI3) and conventional irrigation had similar leaf water potential (Ψleaf), while PRI3 had higher grain yield than conventional treatment and higher root surface area that may have compensated for the moderate level of stress in PRI. The finding that PRI scheduled at three-day intervals (PRI3) was superior to conventional irrigation for a single rice plant is promising and needs to be tested and adapted to field conditions.
url http://dx.doi.org/10.1155/2020/8898141
work_keys_str_mv AT theivasigamaniparthasarathi preliminaryinvestigationoncropgrowthphysiologyandyieldofriceunderpartialrootzoneirrigation
AT arnirmalkumar preliminaryinvestigationoncropgrowthphysiologyandyieldofriceunderpartialrootzoneirrigation
AT koothanvanitha preliminaryinvestigationoncropgrowthphysiologyandyieldofriceunderpartialrootzoneirrigation
_version_ 1715013367074127872