A Support Vector Regression Approach for Investigating Multianticipative Driving Behavior

This paper presents a Support Vector Regression (SVR) approach that can be applied to predict the multianticipative driving behavior using vehicle trajectory data. Building upon the SVR approach, a multianticipative car-following model is developed and enhanced in learning speed and predication accu...

Full description

Bibliographic Details
Main Authors: Bin Lu, Shaoquan Ni, Scott S. Washburn
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2015/701926
Description
Summary:This paper presents a Support Vector Regression (SVR) approach that can be applied to predict the multianticipative driving behavior using vehicle trajectory data. Building upon the SVR approach, a multianticipative car-following model is developed and enhanced in learning speed and predication accuracy. The model training and validation are conducted by using the field trajectory data extracted from the Next Generation Simulation (NGSIM) project. During the model training and validation tests, the estimation results show that the SVR model performs as well as IDM model with respect to the model prediction accuracy. In addition, this paper performs a relative importance analysis to quantify the multianticipation in terms of the different stimuli to which drivers react in platoon car following. The analysis results confirm that drivers respond to the behavior of not only the immediate leading vehicle in front but also the second, third, and even fourth leading vehicles. Specifically, in congested traffic conditions, drivers are observed to be more sensitive to the relative speed than to the gap. These findings provide insight into multianticipative driving behavior and illustrate the necessity of taking into account multianticipative car-following model in microscopic traffic simulation.
ISSN:1024-123X
1563-5147