Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
Spin-crossover molecules can change their spin-state under a variety of stimuli making them ideal sensors; however, they are typically insulating and unstable. Here, Villalva et al overcome these limitations by encapsulating spin-crossover molecules inside a carbon nanotube.
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-03-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-021-21791-3 |
id |
doaj-674fcb01e7d441baa40ad21c785683df |
---|---|
record_format |
Article |
spelling |
doaj-674fcb01e7d441baa40ad21c785683df2021-03-11T11:33:37ZengNature Publishing GroupNature Communications2041-17232021-03-011211810.1038/s41467-021-21791-3Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover moleculesJulia Villalva0Aysegul Develioglu1Nicolas Montenegro-Pohlhammer2Rocío Sánchez-de-Armas3Arturo Gamonal4Eduardo Rial5Mar García-Hernández6Luisa Ruiz-Gonzalez7José Sánchez Costa8Carmen J. Calzado9Emilio M. Pérez10Enrique Burzurí11IMDEA Nanociencia, Campus de CantoblancoIMDEA Nanociencia, Campus de CantoblancoDepartamento de Química Física, Universidad de SevillaDepartamento de Química Física, Universidad de SevillaIMDEA Nanociencia, Campus de CantoblancoIMDEA Nanociencia, Campus de CantoblancoMaterials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC)Departamento de Quimica Inorgánica, Universidad Complutense de MadridIMDEA Nanociencia, Campus de CantoblancoDepartamento de Química Física, Universidad de SevillaIMDEA Nanociencia, Campus de CantoblancoIMDEA Nanociencia, Campus de CantoblancoSpin-crossover molecules can change their spin-state under a variety of stimuli making them ideal sensors; however, they are typically insulating and unstable. Here, Villalva et al overcome these limitations by encapsulating spin-crossover molecules inside a carbon nanotube.https://doi.org/10.1038/s41467-021-21791-3 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Julia Villalva Aysegul Develioglu Nicolas Montenegro-Pohlhammer Rocío Sánchez-de-Armas Arturo Gamonal Eduardo Rial Mar García-Hernández Luisa Ruiz-Gonzalez José Sánchez Costa Carmen J. Calzado Emilio M. Pérez Enrique Burzurí |
spellingShingle |
Julia Villalva Aysegul Develioglu Nicolas Montenegro-Pohlhammer Rocío Sánchez-de-Armas Arturo Gamonal Eduardo Rial Mar García-Hernández Luisa Ruiz-Gonzalez José Sánchez Costa Carmen J. Calzado Emilio M. Pérez Enrique Burzurí Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules Nature Communications |
author_facet |
Julia Villalva Aysegul Develioglu Nicolas Montenegro-Pohlhammer Rocío Sánchez-de-Armas Arturo Gamonal Eduardo Rial Mar García-Hernández Luisa Ruiz-Gonzalez José Sánchez Costa Carmen J. Calzado Emilio M. Pérez Enrique Burzurí |
author_sort |
Julia Villalva |
title |
Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules |
title_short |
Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules |
title_full |
Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules |
title_fullStr |
Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules |
title_full_unstemmed |
Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules |
title_sort |
spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules |
publisher |
Nature Publishing Group |
series |
Nature Communications |
issn |
2041-1723 |
publishDate |
2021-03-01 |
description |
Spin-crossover molecules can change their spin-state under a variety of stimuli making them ideal sensors; however, they are typically insulating and unstable. Here, Villalva et al overcome these limitations by encapsulating spin-crossover molecules inside a carbon nanotube. |
url |
https://doi.org/10.1038/s41467-021-21791-3 |
work_keys_str_mv |
AT juliavillalva spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT ayseguldevelioglu spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT nicolasmontenegropohlhammer spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT rociosanchezdearmas spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT arturogamonal spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT eduardorial spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT margarciahernandez spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT luisaruizgonzalez spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT josesanchezcosta spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT carmenjcalzado spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT emiliomperez spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT enriqueburzuri spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules |
_version_ |
1724225389758251008 |