Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules

Spin-crossover molecules can change their spin-state under a variety of stimuli making them ideal sensors; however, they are typically insulating and unstable. Here, Villalva et al overcome these limitations by encapsulating spin-crossover molecules inside a carbon nanotube.

Bibliographic Details
Main Authors: Julia Villalva, Aysegul Develioglu, Nicolas Montenegro-Pohlhammer, Rocío Sánchez-de-Armas, Arturo Gamonal, Eduardo Rial, Mar García-Hernández, Luisa Ruiz-Gonzalez, José Sánchez Costa, Carmen J. Calzado, Emilio M. Pérez, Enrique Burzurí
Format: Article
Language:English
Published: Nature Publishing Group 2021-03-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-021-21791-3
id doaj-674fcb01e7d441baa40ad21c785683df
record_format Article
spelling doaj-674fcb01e7d441baa40ad21c785683df2021-03-11T11:33:37ZengNature Publishing GroupNature Communications2041-17232021-03-011211810.1038/s41467-021-21791-3Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover moleculesJulia Villalva0Aysegul Develioglu1Nicolas Montenegro-Pohlhammer2Rocío Sánchez-de-Armas3Arturo Gamonal4Eduardo Rial5Mar García-Hernández6Luisa Ruiz-Gonzalez7José Sánchez Costa8Carmen J. Calzado9Emilio M. Pérez10Enrique Burzurí11IMDEA Nanociencia, Campus de CantoblancoIMDEA Nanociencia, Campus de CantoblancoDepartamento de Química Física, Universidad de SevillaDepartamento de Química Física, Universidad de SevillaIMDEA Nanociencia, Campus de CantoblancoIMDEA Nanociencia, Campus de CantoblancoMaterials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC)Departamento de Quimica Inorgánica, Universidad Complutense de MadridIMDEA Nanociencia, Campus de CantoblancoDepartamento de Química Física, Universidad de SevillaIMDEA Nanociencia, Campus de CantoblancoIMDEA Nanociencia, Campus de CantoblancoSpin-crossover molecules can change their spin-state under a variety of stimuli making them ideal sensors; however, they are typically insulating and unstable. Here, Villalva et al overcome these limitations by encapsulating spin-crossover molecules inside a carbon nanotube.https://doi.org/10.1038/s41467-021-21791-3
collection DOAJ
language English
format Article
sources DOAJ
author Julia Villalva
Aysegul Develioglu
Nicolas Montenegro-Pohlhammer
Rocío Sánchez-de-Armas
Arturo Gamonal
Eduardo Rial
Mar García-Hernández
Luisa Ruiz-Gonzalez
José Sánchez Costa
Carmen J. Calzado
Emilio M. Pérez
Enrique Burzurí
spellingShingle Julia Villalva
Aysegul Develioglu
Nicolas Montenegro-Pohlhammer
Rocío Sánchez-de-Armas
Arturo Gamonal
Eduardo Rial
Mar García-Hernández
Luisa Ruiz-Gonzalez
José Sánchez Costa
Carmen J. Calzado
Emilio M. Pérez
Enrique Burzurí
Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
Nature Communications
author_facet Julia Villalva
Aysegul Develioglu
Nicolas Montenegro-Pohlhammer
Rocío Sánchez-de-Armas
Arturo Gamonal
Eduardo Rial
Mar García-Hernández
Luisa Ruiz-Gonzalez
José Sánchez Costa
Carmen J. Calzado
Emilio M. Pérez
Enrique Burzurí
author_sort Julia Villalva
title Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
title_short Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
title_full Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
title_fullStr Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
title_full_unstemmed Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
title_sort spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2021-03-01
description Spin-crossover molecules can change their spin-state under a variety of stimuli making them ideal sensors; however, they are typically insulating and unstable. Here, Villalva et al overcome these limitations by encapsulating spin-crossover molecules inside a carbon nanotube.
url https://doi.org/10.1038/s41467-021-21791-3
work_keys_str_mv AT juliavillalva spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT ayseguldevelioglu spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT nicolasmontenegropohlhammer spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT rociosanchezdearmas spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT arturogamonal spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT eduardorial spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT margarciahernandez spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT luisaruizgonzalez spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT josesanchezcosta spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT carmenjcalzado spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT emiliomperez spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT enriqueburzuri spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
_version_ 1724225389758251008