Lubricant film formation in rough surface non-conformal conjunctions subjected to GPa pressures and high slide-to-roll ratios
Abstract A ball-on-disc machine was employed in a highly idealised setting to study the interplay between oil film formation and surface irregularities in single-sided rough elasto-hydrodynamic lubricated (EHL) conjunctions. The tests were operated under GPa pressures and high slide-to-roll ratios i...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2020-12-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-020-77434-y |
id |
doaj-674c64d190d74c4d86a6df6858def023 |
---|---|
record_format |
Article |
spelling |
doaj-674c64d190d74c4d86a6df6858def0232020-12-20T12:28:22ZengNature Publishing GroupScientific Reports2045-23222020-12-0110111610.1038/s41598-020-77434-yLubricant film formation in rough surface non-conformal conjunctions subjected to GPa pressures and high slide-to-roll ratiosJonny Hansen0Marcus Björling1Roland Larsson2Division of Machine Elements, Luleå University of TechnologyDivision of Machine Elements, Luleå University of TechnologyDivision of Machine Elements, Luleå University of TechnologyAbstract A ball-on-disc machine was employed in a highly idealised setting to study the interplay between oil film formation and surface irregularities in single-sided rough elasto-hydrodynamic lubricated (EHL) conjunctions. The tests were operated under GPa pressures and high slide-to-roll ratios in a situation where the separating gap was smaller than the combined surface roughness height. Under the initial state of solid contact interference and with the operating conditions held fixed, surfaces were found to gradually conform such that a fully separating oil film of nanometre thickness eventually developed—a thin film lubrication state known as micro-EHL. Additionally, with a previously developed approach for 3D surface re-location analysis, we were able to very precisely specify the pertained nature of surface transformations, even at the asperity scale, by comparing the post-test surfaces to those in the virgin state. The surface roughness Sq was reduced by up to 17% after running-in, while the speed required for full film EHL was reduced by a remarkable 90%. Hence, full film EHL is possible even in cases where the Λ-ratio falsely suggests boundary lubrication. This discrepancy was attributed to the way surfaces are deformed inside the contact, i.e., through the establishment of micro-EHL.https://doi.org/10.1038/s41598-020-77434-y |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jonny Hansen Marcus Björling Roland Larsson |
spellingShingle |
Jonny Hansen Marcus Björling Roland Larsson Lubricant film formation in rough surface non-conformal conjunctions subjected to GPa pressures and high slide-to-roll ratios Scientific Reports |
author_facet |
Jonny Hansen Marcus Björling Roland Larsson |
author_sort |
Jonny Hansen |
title |
Lubricant film formation in rough surface non-conformal conjunctions subjected to GPa pressures and high slide-to-roll ratios |
title_short |
Lubricant film formation in rough surface non-conformal conjunctions subjected to GPa pressures and high slide-to-roll ratios |
title_full |
Lubricant film formation in rough surface non-conformal conjunctions subjected to GPa pressures and high slide-to-roll ratios |
title_fullStr |
Lubricant film formation in rough surface non-conformal conjunctions subjected to GPa pressures and high slide-to-roll ratios |
title_full_unstemmed |
Lubricant film formation in rough surface non-conformal conjunctions subjected to GPa pressures and high slide-to-roll ratios |
title_sort |
lubricant film formation in rough surface non-conformal conjunctions subjected to gpa pressures and high slide-to-roll ratios |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2020-12-01 |
description |
Abstract A ball-on-disc machine was employed in a highly idealised setting to study the interplay between oil film formation and surface irregularities in single-sided rough elasto-hydrodynamic lubricated (EHL) conjunctions. The tests were operated under GPa pressures and high slide-to-roll ratios in a situation where the separating gap was smaller than the combined surface roughness height. Under the initial state of solid contact interference and with the operating conditions held fixed, surfaces were found to gradually conform such that a fully separating oil film of nanometre thickness eventually developed—a thin film lubrication state known as micro-EHL. Additionally, with a previously developed approach for 3D surface re-location analysis, we were able to very precisely specify the pertained nature of surface transformations, even at the asperity scale, by comparing the post-test surfaces to those in the virgin state. The surface roughness Sq was reduced by up to 17% after running-in, while the speed required for full film EHL was reduced by a remarkable 90%. Hence, full film EHL is possible even in cases where the Λ-ratio falsely suggests boundary lubrication. This discrepancy was attributed to the way surfaces are deformed inside the contact, i.e., through the establishment of micro-EHL. |
url |
https://doi.org/10.1038/s41598-020-77434-y |
work_keys_str_mv |
AT jonnyhansen lubricantfilmformationinroughsurfacenonconformalconjunctionssubjectedtogpapressuresandhighslidetorollratios AT marcusbjorling lubricantfilmformationinroughsurfacenonconformalconjunctionssubjectedtogpapressuresandhighslidetorollratios AT rolandlarsson lubricantfilmformationinroughsurfacenonconformalconjunctionssubjectedtogpapressuresandhighslidetorollratios |
_version_ |
1724376606767579136 |