Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg group
We consider the higher order diffusion Schrodinger equation with a time nonlocal nonlinearity $$ i\partial_tu-(-\Delta_{\mathbb{H}})^mu =\frac{\lambda}{\Gamma(\alpha)}\int_0^t(t-s)^{\alpha-1} | u(s)|^{p}\,ds, $$ posed in $(\eta, t) \in \mathbb{H}\times(0,+\infty)$, supplemented with an initial...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2020-01-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2020/02/abstr.html |
id |
doaj-6740bdce9844497aadcdb2b7637f6eeb |
---|---|
record_format |
Article |
spelling |
doaj-6740bdce9844497aadcdb2b7637f6eeb2020-11-25T02:00:21ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912020-01-01202002,110Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg groupAhmed Alsaedi0Bashir Ahmad1Mokhtar Kirane2Aberrazak Nabti3 King Abdulaziz Univ., Jeddah, Saudi Arabia King Abdulaziz Univ., Jeddah, Saudi Arabia Univ. de La Rochelle, La Rochelle, France King Abdulaziz Univ., Jeddah, Saudi Arabia We consider the higher order diffusion Schrodinger equation with a time nonlocal nonlinearity $$ i\partial_tu-(-\Delta_{\mathbb{H}})^mu =\frac{\lambda}{\Gamma(\alpha)}\int_0^t(t-s)^{\alpha-1} | u(s)|^{p}\,ds, $$ posed in $(\eta, t) \in \mathbb{H}\times(0,+\infty)$, supplemented with an initial data $u(\eta,0)=f(\eta)$, where $m>1,\,p>1,\,0<\alpha<1$, and $\Delta_{\mathbb{H}}$ is the Laplacian operator on the $(2N+1)$-dimensional Heisenberg group $\mathbb{H}$. Then, we prove a blow up result for its solutions. Furthermore, we give an upper bound estimate of the life span of blow up solutions.http://ejde.math.txstate.edu/Volumes/2020/02/abstr.htmlschrodinger equationheisenberg grouplife spanriemann-liouville fractional integrals and derivatives |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ahmed Alsaedi Bashir Ahmad Mokhtar Kirane Aberrazak Nabti |
spellingShingle |
Ahmed Alsaedi Bashir Ahmad Mokhtar Kirane Aberrazak Nabti Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg group Electronic Journal of Differential Equations schrodinger equation heisenberg group life span riemann-liouville fractional integrals and derivatives |
author_facet |
Ahmed Alsaedi Bashir Ahmad Mokhtar Kirane Aberrazak Nabti |
author_sort |
Ahmed Alsaedi |
title |
Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg group |
title_short |
Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg group |
title_full |
Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg group |
title_fullStr |
Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg group |
title_full_unstemmed |
Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg group |
title_sort |
lifespan of solutions of a fractional evolution equation with higher order diffusion on the heisenberg group |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2020-01-01 |
description |
We consider the higher order diffusion Schrodinger equation with a time nonlocal
nonlinearity
$$
i\partial_tu-(-\Delta_{\mathbb{H}})^mu
=\frac{\lambda}{\Gamma(\alpha)}\int_0^t(t-s)^{\alpha-1} | u(s)|^{p}\,ds,
$$
posed in $(\eta, t) \in \mathbb{H}\times(0,+\infty)$, supplemented with an initial
data $u(\eta,0)=f(\eta)$, where $m>1,\,p>1,\,0<\alpha<1$, and $\Delta_{\mathbb{H}}$
is the Laplacian operator on the $(2N+1)$-dimensional Heisenberg group $\mathbb{H}$.
Then, we prove a blow up result for its solutions. Furthermore, we give an upper
bound estimate of the life span of blow up solutions. |
topic |
schrodinger equation heisenberg group life span riemann-liouville fractional integrals and derivatives |
url |
http://ejde.math.txstate.edu/Volumes/2020/02/abstr.html |
work_keys_str_mv |
AT ahmedalsaedi lifespanofsolutionsofafractionalevolutionequationwithhigherorderdiffusionontheheisenberggroup AT bashirahmad lifespanofsolutionsofafractionalevolutionequationwithhigherorderdiffusionontheheisenberggroup AT mokhtarkirane lifespanofsolutionsofafractionalevolutionequationwithhigherorderdiffusionontheheisenberggroup AT aberrazaknabti lifespanofsolutionsofafractionalevolutionequationwithhigherorderdiffusionontheheisenberggroup |
_version_ |
1724961157015404544 |