Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg group

We consider the higher order diffusion Schrodinger equation with a time nonlocal nonlinearity $$ i\partial_tu-(-\Delta_{\mathbb{H}})^mu =\frac{\lambda}{\Gamma(\alpha)}\int_0^t(t-s)^{\alpha-1} | u(s)|^{p}\,ds, $$ posed in $(\eta, t) \in \mathbb{H}\times(0,+\infty)$, supplemented with an initial...

Full description

Bibliographic Details
Main Authors: Ahmed Alsaedi, Bashir Ahmad, Mokhtar Kirane, Aberrazak Nabti
Format: Article
Language:English
Published: Texas State University 2020-01-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2020/02/abstr.html
id doaj-6740bdce9844497aadcdb2b7637f6eeb
record_format Article
spelling doaj-6740bdce9844497aadcdb2b7637f6eeb2020-11-25T02:00:21ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912020-01-01202002,110Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg groupAhmed Alsaedi0Bashir Ahmad1Mokhtar Kirane2Aberrazak Nabti3 King Abdulaziz Univ., Jeddah, Saudi Arabia King Abdulaziz Univ., Jeddah, Saudi Arabia Univ. de La Rochelle, La Rochelle, France King Abdulaziz Univ., Jeddah, Saudi Arabia We consider the higher order diffusion Schrodinger equation with a time nonlocal nonlinearity $$ i\partial_tu-(-\Delta_{\mathbb{H}})^mu =\frac{\lambda}{\Gamma(\alpha)}\int_0^t(t-s)^{\alpha-1} | u(s)|^{p}\,ds, $$ posed in $(\eta, t) \in \mathbb{H}\times(0,+\infty)$, supplemented with an initial data $u(\eta,0)=f(\eta)$, where $m>1,\,p>1,\,0<\alpha<1$, and $\Delta_{\mathbb{H}}$ is the Laplacian operator on the $(2N+1)$-dimensional Heisenberg group $\mathbb{H}$. Then, we prove a blow up result for its solutions. Furthermore, we give an upper bound estimate of the life span of blow up solutions.http://ejde.math.txstate.edu/Volumes/2020/02/abstr.htmlschrodinger equationheisenberg grouplife spanriemann-liouville fractional integrals and derivatives
collection DOAJ
language English
format Article
sources DOAJ
author Ahmed Alsaedi
Bashir Ahmad
Mokhtar Kirane
Aberrazak Nabti
spellingShingle Ahmed Alsaedi
Bashir Ahmad
Mokhtar Kirane
Aberrazak Nabti
Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg group
Electronic Journal of Differential Equations
schrodinger equation
heisenberg group
life span
riemann-liouville fractional integrals and derivatives
author_facet Ahmed Alsaedi
Bashir Ahmad
Mokhtar Kirane
Aberrazak Nabti
author_sort Ahmed Alsaedi
title Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg group
title_short Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg group
title_full Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg group
title_fullStr Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg group
title_full_unstemmed Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg group
title_sort lifespan of solutions of a fractional evolution equation with higher order diffusion on the heisenberg group
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2020-01-01
description We consider the higher order diffusion Schrodinger equation with a time nonlocal nonlinearity $$ i\partial_tu-(-\Delta_{\mathbb{H}})^mu =\frac{\lambda}{\Gamma(\alpha)}\int_0^t(t-s)^{\alpha-1} | u(s)|^{p}\,ds, $$ posed in $(\eta, t) \in \mathbb{H}\times(0,+\infty)$, supplemented with an initial data $u(\eta,0)=f(\eta)$, where $m>1,\,p>1,\,0<\alpha<1$, and $\Delta_{\mathbb{H}}$ is the Laplacian operator on the $(2N+1)$-dimensional Heisenberg group $\mathbb{H}$. Then, we prove a blow up result for its solutions. Furthermore, we give an upper bound estimate of the life span of blow up solutions.
topic schrodinger equation
heisenberg group
life span
riemann-liouville fractional integrals and derivatives
url http://ejde.math.txstate.edu/Volumes/2020/02/abstr.html
work_keys_str_mv AT ahmedalsaedi lifespanofsolutionsofafractionalevolutionequationwithhigherorderdiffusionontheheisenberggroup
AT bashirahmad lifespanofsolutionsofafractionalevolutionequationwithhigherorderdiffusionontheheisenberggroup
AT mokhtarkirane lifespanofsolutionsofafractionalevolutionequationwithhigherorderdiffusionontheheisenberggroup
AT aberrazaknabti lifespanofsolutionsofafractionalevolutionequationwithhigherorderdiffusionontheheisenberggroup
_version_ 1724961157015404544