Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delays
In this paper, by using Mawhin's continuation theorem of coincidence degree theory, sufficient conditions for the existence of positive almost periodic solutions are obtained for the predator-prey Lotka-Volterra competition system with delays \begin{eqnarray*} \left\{\begin{array}{lll} \frac{{\...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2012-08-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=1716 |
id |
doaj-67287bee0b8840fb99801a8dc084147a |
---|---|
record_format |
Article |
spelling |
doaj-67287bee0b8840fb99801a8dc084147a2021-07-14T07:21:24ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752012-08-0120126511210.14232/ejqtde.2012.1.651716Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delaysYuan Ye0Yunnan University, Kunming, Yunnan, P. R. ChinaIn this paper, by using Mawhin's continuation theorem of coincidence degree theory, sufficient conditions for the existence of positive almost periodic solutions are obtained for the predator-prey Lotka-Volterra competition system with delays \begin{eqnarray*} \left\{\begin{array}{lll} \frac{{\mathrm{d}} u_i(t)}{{\mathrm{d}}t}&=&u_i(t)\bigg [a_i(t)-\sum\limits_{ l=1}^{n}a_{il}(t)u_l(t-\sigma_{il}(t))-\sum\limits_{j=1}^{m}b_{ij}(t)v_j(t-\tau_{ij}(t))\bigg],i=1,\ldots,n,\\ \frac{{\mathrm{d}} v_j(t)}{{\mathrm{d}} t}&=&v_j(t)\bigg[-r_j(t)+\sum\limits_{l=1}^{n}d_{jl}(t)u_l(t-\delta_{jl}(t))-\sum\limits_{h=1}^{m}e_{jh}(t)v_h(t-\theta_{jh}(t))\bigg ], j=1,\ldots,m, \end{array}\right. \end{eqnarray*} where $a_i,r_j, a_{il}, b_{ij},d_{jl},e_{jh}\in C(\mathbb{R},(0,\infty)\sigma_{il},\tau_{ij},\delta_{jl},\theta_{jh}\in C(\mathbb{R},\mathbb{R})(i,l=1,\ldots,n, j,h=1,\ldots,m)$ are almost periodic functions.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=1716predator-prey lotka-volterra systemalmost periodic solutionscoincidence degreedelays |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yuan Ye |
spellingShingle |
Yuan Ye Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delays Electronic Journal of Qualitative Theory of Differential Equations predator-prey lotka-volterra system almost periodic solutions coincidence degree delays |
author_facet |
Yuan Ye |
author_sort |
Yuan Ye |
title |
Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delays |
title_short |
Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delays |
title_full |
Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delays |
title_fullStr |
Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delays |
title_full_unstemmed |
Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delays |
title_sort |
positive almost periodic solutions for a predator-prey lotka-volterra system with delays |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2012-08-01 |
description |
In this paper, by using Mawhin's continuation theorem of coincidence degree theory, sufficient conditions for the existence of positive almost periodic solutions are obtained for the predator-prey Lotka-Volterra competition system with delays
\begin{eqnarray*}
\left\{\begin{array}{lll} \frac{{\mathrm{d}} u_i(t)}{{\mathrm{d}}t}&=&u_i(t)\bigg [a_i(t)-\sum\limits_{ l=1}^{n}a_{il}(t)u_l(t-\sigma_{il}(t))-\sum\limits_{j=1}^{m}b_{ij}(t)v_j(t-\tau_{ij}(t))\bigg],i=1,\ldots,n,\\
\frac{{\mathrm{d}} v_j(t)}{{\mathrm{d}} t}&=&v_j(t)\bigg[-r_j(t)+\sum\limits_{l=1}^{n}d_{jl}(t)u_l(t-\delta_{jl}(t))-\sum\limits_{h=1}^{m}e_{jh}(t)v_h(t-\theta_{jh}(t))\bigg ], j=1,\ldots,m,
\end{array}\right.
\end{eqnarray*}
where $a_i,r_j, a_{il}, b_{ij},d_{jl},e_{jh}\in C(\mathbb{R},(0,\infty)\sigma_{il},\tau_{ij},\delta_{jl},\theta_{jh}\in C(\mathbb{R},\mathbb{R})(i,l=1,\ldots,n, j,h=1,\ldots,m)$ are almost periodic functions. |
topic |
predator-prey lotka-volterra system almost periodic solutions coincidence degree delays |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=1716 |
work_keys_str_mv |
AT yuanye positivealmostperiodicsolutionsforapredatorpreylotkavolterrasystemwithdelays |
_version_ |
1721303702368681984 |