Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delays

In this paper, by using Mawhin's continuation theorem of coincidence degree theory, sufficient conditions for the existence of positive almost periodic solutions are obtained for the predator-prey Lotka-Volterra competition system with delays \begin{eqnarray*} \left\{\begin{array}{lll} \frac{{\...

Full description

Bibliographic Details
Main Author: Yuan Ye
Format: Article
Language:English
Published: University of Szeged 2012-08-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1716
id doaj-67287bee0b8840fb99801a8dc084147a
record_format Article
spelling doaj-67287bee0b8840fb99801a8dc084147a2021-07-14T07:21:24ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752012-08-0120126511210.14232/ejqtde.2012.1.651716Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delaysYuan Ye0Yunnan University, Kunming, Yunnan, P. R. ChinaIn this paper, by using Mawhin's continuation theorem of coincidence degree theory, sufficient conditions for the existence of positive almost periodic solutions are obtained for the predator-prey Lotka-Volterra competition system with delays \begin{eqnarray*} \left\{\begin{array}{lll} \frac{{\mathrm{d}} u_i(t)}{{\mathrm{d}}t}&=&u_i(t)\bigg [a_i(t)-\sum\limits_{ l=1}^{n}a_{il}(t)u_l(t-\sigma_{il}(t))-\sum\limits_{j=1}^{m}b_{ij}(t)v_j(t-\tau_{ij}(t))\bigg],i=1,\ldots,n,\\ \frac{{\mathrm{d}} v_j(t)}{{\mathrm{d}} t}&=&v_j(t)\bigg[-r_j(t)+\sum\limits_{l=1}^{n}d_{jl}(t)u_l(t-\delta_{jl}(t))-\sum\limits_{h=1}^{m}e_{jh}(t)v_h(t-\theta_{jh}(t))\bigg ], j=1,\ldots,m, \end{array}\right. \end{eqnarray*} where $a_i,r_j, a_{il}, b_{ij},d_{jl},e_{jh}\in C(\mathbb{R},(0,\infty)\sigma_{il},\tau_{ij},\delta_{jl},\theta_{jh}\in C(\mathbb{R},\mathbb{R})(i,l=1,\ldots,n, j,h=1,\ldots,m)$ are almost periodic functions.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1716predator-prey lotka-volterra systemalmost periodic solutionscoincidence degreedelays
collection DOAJ
language English
format Article
sources DOAJ
author Yuan Ye
spellingShingle Yuan Ye
Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delays
Electronic Journal of Qualitative Theory of Differential Equations
predator-prey lotka-volterra system
almost periodic solutions
coincidence degree
delays
author_facet Yuan Ye
author_sort Yuan Ye
title Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delays
title_short Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delays
title_full Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delays
title_fullStr Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delays
title_full_unstemmed Positive almost periodic solutions for a predator-prey Lotka-Volterra system with delays
title_sort positive almost periodic solutions for a predator-prey lotka-volterra system with delays
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2012-08-01
description In this paper, by using Mawhin's continuation theorem of coincidence degree theory, sufficient conditions for the existence of positive almost periodic solutions are obtained for the predator-prey Lotka-Volterra competition system with delays \begin{eqnarray*} \left\{\begin{array}{lll} \frac{{\mathrm{d}} u_i(t)}{{\mathrm{d}}t}&=&u_i(t)\bigg [a_i(t)-\sum\limits_{ l=1}^{n}a_{il}(t)u_l(t-\sigma_{il}(t))-\sum\limits_{j=1}^{m}b_{ij}(t)v_j(t-\tau_{ij}(t))\bigg],i=1,\ldots,n,\\ \frac{{\mathrm{d}} v_j(t)}{{\mathrm{d}} t}&=&v_j(t)\bigg[-r_j(t)+\sum\limits_{l=1}^{n}d_{jl}(t)u_l(t-\delta_{jl}(t))-\sum\limits_{h=1}^{m}e_{jh}(t)v_h(t-\theta_{jh}(t))\bigg ], j=1,\ldots,m, \end{array}\right. \end{eqnarray*} where $a_i,r_j, a_{il}, b_{ij},d_{jl},e_{jh}\in C(\mathbb{R},(0,\infty)\sigma_{il},\tau_{ij},\delta_{jl},\theta_{jh}\in C(\mathbb{R},\mathbb{R})(i,l=1,\ldots,n, j,h=1,\ldots,m)$ are almost periodic functions.
topic predator-prey lotka-volterra system
almost periodic solutions
coincidence degree
delays
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1716
work_keys_str_mv AT yuanye positivealmostperiodicsolutionsforapredatorpreylotkavolterrasystemwithdelays
_version_ 1721303702368681984