A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions
In this paper we discuss a nonlocal approximation to the classical heat equation with Neumann boundary conditions. We considerwt∊(x,t)=1∊N+2∫ΩJx-y∊(w∊(y,t)-w∊(x,t))dy+C1∊N∫∂ΩJx-y∊g(y,t)dSy,(x,t)∈Ω‾×(0,T),w(x,0)=u0(x),x∈Ω‾,and we show that the corresponding solutions, w∊, converge to the classical so...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-01-01
|
Series: | Journal of King Saud University: Science |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1018364717307887 |
id |
doaj-67275e3a56a94ea89a2a98a7ef99de75 |
---|---|
record_format |
Article |
spelling |
doaj-67275e3a56a94ea89a2a98a7ef99de752020-11-25T01:20:35ZengElsevierJournal of King Saud University: Science1018-36472020-01-013211720A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditionsCesar A. Gómez0Julio D. Rossi1Department of Mathematics, National University of Colombia, Bogotá, Colombia; Corresponding author.Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria. Pab 1, 1428 Buenos Aires, ArgentinaIn this paper we discuss a nonlocal approximation to the classical heat equation with Neumann boundary conditions. We considerwt∊(x,t)=1∊N+2∫ΩJx-y∊(w∊(y,t)-w∊(x,t))dy+C1∊N∫∂ΩJx-y∊g(y,t)dSy,(x,t)∈Ω‾×(0,T),w(x,0)=u0(x),x∈Ω‾,and we show that the corresponding solutions, w∊, converge to the classical solution of the local heat equation vt=Δv with Neumann boundary conditions, ∂v∂n(x,t)=g(x,t), and initial condition v(0)=u0, as the parameter ∊ goes to zero. The obtained convergence is in the weak star on L∞ topology. Keywords: Nonlocal diffusion, Neumann boundary conditions, Heat equation, 2010 Mathematics Subject Classification: 45A05, 45J05, 35K05http://www.sciencedirect.com/science/article/pii/S1018364717307887 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Cesar A. Gómez Julio D. Rossi |
spellingShingle |
Cesar A. Gómez Julio D. Rossi A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions Journal of King Saud University: Science |
author_facet |
Cesar A. Gómez Julio D. Rossi |
author_sort |
Cesar A. Gómez |
title |
A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions |
title_short |
A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions |
title_full |
A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions |
title_fullStr |
A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions |
title_full_unstemmed |
A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions |
title_sort |
nonlocal diffusion problem that approximates the heat equation with neumann boundary conditions |
publisher |
Elsevier |
series |
Journal of King Saud University: Science |
issn |
1018-3647 |
publishDate |
2020-01-01 |
description |
In this paper we discuss a nonlocal approximation to the classical heat equation with Neumann boundary conditions. We considerwt∊(x,t)=1∊N+2∫ΩJx-y∊(w∊(y,t)-w∊(x,t))dy+C1∊N∫∂ΩJx-y∊g(y,t)dSy,(x,t)∈Ω‾×(0,T),w(x,0)=u0(x),x∈Ω‾,and we show that the corresponding solutions, w∊, converge to the classical solution of the local heat equation vt=Δv with Neumann boundary conditions, ∂v∂n(x,t)=g(x,t), and initial condition v(0)=u0, as the parameter ∊ goes to zero. The obtained convergence is in the weak star on L∞ topology. Keywords: Nonlocal diffusion, Neumann boundary conditions, Heat equation, 2010 Mathematics Subject Classification: 45A05, 45J05, 35K05 |
url |
http://www.sciencedirect.com/science/article/pii/S1018364717307887 |
work_keys_str_mv |
AT cesaragomez anonlocaldiffusionproblemthatapproximatestheheatequationwithneumannboundaryconditions AT juliodrossi anonlocaldiffusionproblemthatapproximatestheheatequationwithneumannboundaryconditions AT cesaragomez nonlocaldiffusionproblemthatapproximatestheheatequationwithneumannboundaryconditions AT juliodrossi nonlocaldiffusionproblemthatapproximatestheheatequationwithneumannboundaryconditions |
_version_ |
1725133417172959232 |