A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions

In this paper we discuss a nonlocal approximation to the classical heat equation with Neumann boundary conditions. We considerwt∊(x,t)=1∊N+2∫ΩJx-y∊(w∊(y,t)-w∊(x,t))dy+C1∊N∫∂ΩJx-y∊g(y,t)dSy,(x,t)∈Ω‾×(0,T),w(x,0)=u0(x),x∈Ω‾,and we show that the corresponding solutions, w∊, converge to the classical so...

Full description

Bibliographic Details
Main Authors: Cesar A. Gómez, Julio D. Rossi
Format: Article
Language:English
Published: Elsevier 2020-01-01
Series:Journal of King Saud University: Science
Online Access:http://www.sciencedirect.com/science/article/pii/S1018364717307887
id doaj-67275e3a56a94ea89a2a98a7ef99de75
record_format Article
spelling doaj-67275e3a56a94ea89a2a98a7ef99de752020-11-25T01:20:35ZengElsevierJournal of King Saud University: Science1018-36472020-01-013211720A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditionsCesar A. Gómez0Julio D. Rossi1Department of Mathematics, National University of Colombia, Bogotá, Colombia; Corresponding author.Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria. Pab 1, 1428 Buenos Aires, ArgentinaIn this paper we discuss a nonlocal approximation to the classical heat equation with Neumann boundary conditions. We considerwt∊(x,t)=1∊N+2∫ΩJx-y∊(w∊(y,t)-w∊(x,t))dy+C1∊N∫∂ΩJx-y∊g(y,t)dSy,(x,t)∈Ω‾×(0,T),w(x,0)=u0(x),x∈Ω‾,and we show that the corresponding solutions, w∊, converge to the classical solution of the local heat equation vt=Δv with Neumann boundary conditions, ∂v∂n(x,t)=g(x,t), and initial condition v(0)=u0, as the parameter ∊ goes to zero. The obtained convergence is in the weak star on L∞ topology. Keywords: Nonlocal diffusion, Neumann boundary conditions, Heat equation, 2010 Mathematics Subject Classification: 45A05, 45J05, 35K05http://www.sciencedirect.com/science/article/pii/S1018364717307887
collection DOAJ
language English
format Article
sources DOAJ
author Cesar A. Gómez
Julio D. Rossi
spellingShingle Cesar A. Gómez
Julio D. Rossi
A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions
Journal of King Saud University: Science
author_facet Cesar A. Gómez
Julio D. Rossi
author_sort Cesar A. Gómez
title A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions
title_short A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions
title_full A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions
title_fullStr A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions
title_full_unstemmed A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions
title_sort nonlocal diffusion problem that approximates the heat equation with neumann boundary conditions
publisher Elsevier
series Journal of King Saud University: Science
issn 1018-3647
publishDate 2020-01-01
description In this paper we discuss a nonlocal approximation to the classical heat equation with Neumann boundary conditions. We considerwt∊(x,t)=1∊N+2∫ΩJx-y∊(w∊(y,t)-w∊(x,t))dy+C1∊N∫∂ΩJx-y∊g(y,t)dSy,(x,t)∈Ω‾×(0,T),w(x,0)=u0(x),x∈Ω‾,and we show that the corresponding solutions, w∊, converge to the classical solution of the local heat equation vt=Δv with Neumann boundary conditions, ∂v∂n(x,t)=g(x,t), and initial condition v(0)=u0, as the parameter ∊ goes to zero. The obtained convergence is in the weak star on L∞ topology. Keywords: Nonlocal diffusion, Neumann boundary conditions, Heat equation, 2010 Mathematics Subject Classification: 45A05, 45J05, 35K05
url http://www.sciencedirect.com/science/article/pii/S1018364717307887
work_keys_str_mv AT cesaragomez anonlocaldiffusionproblemthatapproximatestheheatequationwithneumannboundaryconditions
AT juliodrossi anonlocaldiffusionproblemthatapproximatestheheatequationwithneumannboundaryconditions
AT cesaragomez nonlocaldiffusionproblemthatapproximatestheheatequationwithneumannboundaryconditions
AT juliodrossi nonlocaldiffusionproblemthatapproximatestheheatequationwithneumannboundaryconditions
_version_ 1725133417172959232