Numerical Solution of a Singularly Perturbed Problem on a Circular Domain
We consider a singularly perturbed elliptic problem, of convection-diffusion type, posed on a circular domain. Using polar coordinates, simple upwinding and a piecewise-uniform Shishkin mesh in the radial direction, we construct a numerical method that is monotone, pointwise accurate and parameter-un...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Yaroslavl State University
2016-06-01
|
Series: | Modelirovanie i Analiz Informacionnyh Sistem |
Subjects: | |
Online Access: | https://www.mais-journal.ru/jour/article/view/349 |
id |
doaj-66fd416bb4a847dd9177536e5ee04af0 |
---|---|
record_format |
Article |
spelling |
doaj-66fd416bb4a847dd9177536e5ee04af02021-07-29T08:15:21ZengYaroslavl State UniversityModelirovanie i Analiz Informacionnyh Sistem1818-10152313-54172016-06-0123334935610.18255/1818-1015-2016-3-349-356306Numerical Solution of a Singularly Perturbed Problem on a Circular DomainA. F. Hegarty0E. O’Riordan1University of Limerick, IrelandDublin City University, IrelandWe consider a singularly perturbed elliptic problem, of convection-diffusion type, posed on a circular domain. Using polar coordinates, simple upwinding and a piecewise-uniform Shishkin mesh in the radial direction, we construct a numerical method that is monotone, pointwise accurate and parameter-uniform under certain compatibility constraints. Numerical results are presented to illustrate the performance of the numerical method when these constraints are not imposed on the data.https://www.mais-journal.ru/jour/article/view/349circular domainconvection-diffusionparameter-uniformshishkin mesh |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. F. Hegarty E. O’Riordan |
spellingShingle |
A. F. Hegarty E. O’Riordan Numerical Solution of a Singularly Perturbed Problem on a Circular Domain Modelirovanie i Analiz Informacionnyh Sistem circular domain convection-diffusion parameter-uniform shishkin mesh |
author_facet |
A. F. Hegarty E. O’Riordan |
author_sort |
A. F. Hegarty |
title |
Numerical Solution of a Singularly Perturbed Problem on a Circular Domain |
title_short |
Numerical Solution of a Singularly Perturbed Problem on a Circular Domain |
title_full |
Numerical Solution of a Singularly Perturbed Problem on a Circular Domain |
title_fullStr |
Numerical Solution of a Singularly Perturbed Problem on a Circular Domain |
title_full_unstemmed |
Numerical Solution of a Singularly Perturbed Problem on a Circular Domain |
title_sort |
numerical solution of a singularly perturbed problem on a circular domain |
publisher |
Yaroslavl State University |
series |
Modelirovanie i Analiz Informacionnyh Sistem |
issn |
1818-1015 2313-5417 |
publishDate |
2016-06-01 |
description |
We consider a singularly perturbed elliptic problem, of convection-diffusion type, posed on a circular domain. Using polar coordinates, simple upwinding and a piecewise-uniform Shishkin mesh in the radial direction, we construct a numerical method that is monotone, pointwise accurate and parameter-uniform under certain compatibility constraints. Numerical results are presented to illustrate the performance of the numerical method when these constraints are not imposed on the data. |
topic |
circular domain convection-diffusion parameter-uniform shishkin mesh |
url |
https://www.mais-journal.ru/jour/article/view/349 |
work_keys_str_mv |
AT afhegarty numericalsolutionofasingularlyperturbedproblemonacirculardomain AT eoriordan numericalsolutionofasingularlyperturbedproblemonacirculardomain |
_version_ |
1721256465202675712 |