A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.
We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5091833?pdf=render |
id |
doaj-66eef62f52fa4ac79eca8199655662dc |
---|---|
record_format |
Article |
spelling |
doaj-66eef62f52fa4ac79eca8199655662dc2020-11-25T01:02:27ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-011111e016560010.1371/journal.pone.0165600A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.Yongcheng LiRong SunYuechao WangHongyi LiXiongfei ZhengWe propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.http://europepmc.org/articles/PMC5091833?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yongcheng Li Rong Sun Yuechao Wang Hongyi Li Xiongfei Zheng |
spellingShingle |
Yongcheng Li Rong Sun Yuechao Wang Hongyi Li Xiongfei Zheng A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment. PLoS ONE |
author_facet |
Yongcheng Li Rong Sun Yuechao Wang Hongyi Li Xiongfei Zheng |
author_sort |
Yongcheng Li |
title |
A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment. |
title_short |
A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment. |
title_full |
A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment. |
title_fullStr |
A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment. |
title_full_unstemmed |
A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment. |
title_sort |
novel robot system integrating biological and mechanical intelligence based on dissociated neural network-controlled closed-loop environment. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2016-01-01 |
description |
We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks. |
url |
http://europepmc.org/articles/PMC5091833?pdf=render |
work_keys_str_mv |
AT yongchengli anovelrobotsystemintegratingbiologicalandmechanicalintelligencebasedondissociatedneuralnetworkcontrolledclosedloopenvironment AT rongsun anovelrobotsystemintegratingbiologicalandmechanicalintelligencebasedondissociatedneuralnetworkcontrolledclosedloopenvironment AT yuechaowang anovelrobotsystemintegratingbiologicalandmechanicalintelligencebasedondissociatedneuralnetworkcontrolledclosedloopenvironment AT hongyili anovelrobotsystemintegratingbiologicalandmechanicalintelligencebasedondissociatedneuralnetworkcontrolledclosedloopenvironment AT xiongfeizheng anovelrobotsystemintegratingbiologicalandmechanicalintelligencebasedondissociatedneuralnetworkcontrolledclosedloopenvironment AT yongchengli novelrobotsystemintegratingbiologicalandmechanicalintelligencebasedondissociatedneuralnetworkcontrolledclosedloopenvironment AT rongsun novelrobotsystemintegratingbiologicalandmechanicalintelligencebasedondissociatedneuralnetworkcontrolledclosedloopenvironment AT yuechaowang novelrobotsystemintegratingbiologicalandmechanicalintelligencebasedondissociatedneuralnetworkcontrolledclosedloopenvironment AT hongyili novelrobotsystemintegratingbiologicalandmechanicalintelligencebasedondissociatedneuralnetworkcontrolledclosedloopenvironment AT xiongfeizheng novelrobotsystemintegratingbiologicalandmechanicalintelligencebasedondissociatedneuralnetworkcontrolledclosedloopenvironment |
_version_ |
1725204901275893760 |