Finite-Time Projective Lag Synchronization and Identification between Multiple Weights Markovian Jumping Complex Networks with Stochastic Perturbations

Two nonidentical dimension Markovian jumping complex networks with stochastic perturbations are taken as objects. The network models under two conditions including single weight and double weights are established, respectively, to study the problem of synchronization and identification. A finite-tim...

Full description

Bibliographic Details
Main Authors: Qian Xie, Changhui Mu, Tong Wang, Gang Wu, Rong Jia
Format: Article
Language:English
Published: Hindawi-Wiley 2020-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2020/9713652
Description
Summary:Two nonidentical dimension Markovian jumping complex networks with stochastic perturbations are taken as objects. The network models under two conditions including single weight and double weights are established, respectively, to study the problem of synchronization and identification. A finite-time projection lag synchronization method is proposed and the unknown parameters of the network are identified. First of all, based on Itô’s formula and the stability theory of finite-time, a credible finite-time adaptive controller is presented to guarantee the synchronization of two nonidentical dimension Markovian jumping complex networks with stochastic perturbations under both conditions. Meanwhile, in order to identify the uncertain parameters of the network with stochastic perturbations accurately, some corresponding sufficient conditions are given. Finally, numerical simulations under two working conditions are given to demonstrate the effectiveness and feasibility of the main theory result.
ISSN:1076-2787
1099-0526