MODELO MATEMÁTICO DEL TRANSPORTE DE UNA TOXINA EN UNA RED TRÓFICA MARINA

Algunos casos de intoxicación por consumo de peces contaminados, como la intoxicación por ciguatera, ocurren inesperadamente y no son fáciles de detectar previamente, dado que los peces que portan la toxina no presentan aspecto y/o síntomas de enfermos. En este trabajo proponemos un modelo matem...

Full description

Bibliographic Details
Main Authors: Daniel Arbeláez A., Jorge Mauricio Ruiz V.
Format: Article
Language:Spanish
Published: Universidad de Costa Rica 2014-07-01
Series:Revista de Matemática: Teoría y Aplicaciones
Subjects:
Online Access:https://revistas.ucr.ac.cr/index.php/matematica/article/view/15183
Description
Summary:Algunos casos de intoxicación por consumo de peces contaminados, como la intoxicación por ciguatera, ocurren inesperadamente y no son fáciles de detectar previamente, dado que los peces que portan la toxina no presentan aspecto y/o síntomas de enfermos. En este trabajo proponemos un modelo matemático para el transporte y acumulación de una toxina a través de una cadena alimentaria. El modelo se plantea mediante un sistema rígido de ecuaciones diferenciales que describen la dinámica. Se analiza la estabilidad local de la solución de equilibrio. Se discuten diferentes escenarios de aparición de brotes de una toxina a partir de simulaciones numéricas obtenidas mediante un esquema de discretización que combina un método de Runge-Kutta de tercer orden y la regla del trapecio, evitando la rigidez del sistema. Los resultados muestran que el tiempo que tarda en desaparecer la toxina en la red trófica depende del estado en que se encuentra la dinámica poblacional al momento del brote. Esta información puede emplearse para establecer un tiempo de veda en la pesca de tal manera que la toxina se reduzca a niveles inocuos para la salud humana.
ISSN:2215-3373