Combined treatment with HMGN1 and anti-CD4 depleting antibody reverses T cell exhaustion and exerts robust anti-tumor effects in mice

Abstract Background Transient depletion of CD4+ T cells results in tumor suppression and survival benefit in murine models; however, the tumor progression and recurrence still occur over more long-term monitoring of mice. Thus, we explored an additional strategy to enhance endogenous immune response...

Full description

Bibliographic Details
Main Authors: Chang-Yu Chen, Satoshi Ueha, Yoshiro Ishiwata, Shoji Yokochi, De Yang, Joost J. Oppenheim, Haru Ogiwara, Shigeyuki Shichino, Shungo Deshimaru, Francis H. W. Shand, Shiro Shibayama, Kouji Matsushima
Format: Article
Language:English
Published: BMJ Publishing Group 2019-01-01
Series:Journal for ImmunoTherapy of Cancer
Subjects:
Online Access:http://link.springer.com/article/10.1186/s40425-019-0503-6
Description
Summary:Abstract Background Transient depletion of CD4+ T cells results in tumor suppression and survival benefit in murine models; however, the tumor progression and recurrence still occur over more long-term monitoring of mice. Thus, we explored an additional strategy to enhance endogenous immune responses by an alarmin, high mobility group nucleosome binding protein 1 (HMGN1). Methods The anti-tumor effects of HMGN1, anti-CD4 depleting antibody, and their combined treatment were monitored in the Colon26 or the B16F10 subcutaneous murine models. The tumor-infiltrating CD8+ T cell proliferation, differentiation, exhaustion, and its gene expression were determined by flow cytometry, transcriptome analysis, and quantitative real-time PCR. Results Our results show that a systemic administration of low doses of HMGN1 with an anti-CD4 depleting antibody (HMGN1/αCD4) promoted expansion of CD8+ T cell populations (e.g. CD137+ PD-1+ and CD44hi PD-1+), recruited CCR7+ migratory dendritic cells to the tumor, and reduced co-inhibitory molecules (e.g. PD-1, LAG-3, and TIM-3) to counteract CD8+ T cell exhaustion. Conclusion The HMGN1/αCD4 treatment expanded effector CD8+ T cells and prolonged their anti-tumor activities by rescuing them from exhaustion, thus resulting in tumor regression and even rejection in long-term monitored mice.
ISSN:2051-1426