Potential bioavailability of organic matter from atmospheric particles to marine heterotrophic bacteria

<p>The surface ocean receives important amounts of organic carbon from atmospheric deposition. The degree of bioavailability of this source of organic carbon will determine its impact on the marine carbon cycle. In this study, the potential availability of dissolved organic carbon (DOC) leache...

Full description

Bibliographic Details
Main Authors: K. Djaoudi, F. Van Wambeke, A. Barani, N. Bhairy, S. Chevaillier, K. Desboeufs, S. Nunige, M. Labiadh, T. Henry des Tureaux, D. Lefèvre, A. Nouara, C. Panagiotopoulos, M. Tedetti, E. Pulido-Villena
Format: Article
Language:English
Published: Copernicus Publications 2020-12-01
Series:Biogeosciences
Online Access:https://bg.copernicus.org/articles/17/6271/2020/bg-17-6271-2020.pdf
id doaj-66c5dac69962453b942dc40cb2529c5e
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author K. Djaoudi
K. Djaoudi
F. Van Wambeke
A. Barani
N. Bhairy
S. Chevaillier
K. Desboeufs
S. Nunige
M. Labiadh
T. Henry des Tureaux
D. Lefèvre
A. Nouara
C. Panagiotopoulos
M. Tedetti
E. Pulido-Villena
spellingShingle K. Djaoudi
K. Djaoudi
F. Van Wambeke
A. Barani
N. Bhairy
S. Chevaillier
K. Desboeufs
S. Nunige
M. Labiadh
T. Henry des Tureaux
D. Lefèvre
A. Nouara
C. Panagiotopoulos
M. Tedetti
E. Pulido-Villena
Potential bioavailability of organic matter from atmospheric particles to marine heterotrophic bacteria
Biogeosciences
author_facet K. Djaoudi
K. Djaoudi
F. Van Wambeke
A. Barani
N. Bhairy
S. Chevaillier
K. Desboeufs
S. Nunige
M. Labiadh
T. Henry des Tureaux
D. Lefèvre
A. Nouara
C. Panagiotopoulos
M. Tedetti
E. Pulido-Villena
author_sort K. Djaoudi
title Potential bioavailability of organic matter from atmospheric particles to marine heterotrophic bacteria
title_short Potential bioavailability of organic matter from atmospheric particles to marine heterotrophic bacteria
title_full Potential bioavailability of organic matter from atmospheric particles to marine heterotrophic bacteria
title_fullStr Potential bioavailability of organic matter from atmospheric particles to marine heterotrophic bacteria
title_full_unstemmed Potential bioavailability of organic matter from atmospheric particles to marine heterotrophic bacteria
title_sort potential bioavailability of organic matter from atmospheric particles to marine heterotrophic bacteria
publisher Copernicus Publications
series Biogeosciences
issn 1726-4170
1726-4189
publishDate 2020-12-01
description <p>The surface ocean receives important amounts of organic carbon from atmospheric deposition. The degree of bioavailability of this source of organic carbon will determine its impact on the marine carbon cycle. In this study, the potential availability of dissolved organic carbon (DOC) leached from both desert dust and anthropogenic aerosols to marine heterotrophic bacteria was investigated. The experimental design was based on 16 d incubations, in the dark, of a marine bacterial inoculum into artificial seawater amended with water-soluble Saharan dust (D treatment) and anthropogenic (A treatment) aerosols, so that the initial DOC concentration was similar between treatments. Glucose-amended (G) and non-amended (control) treatments were run in parallel. Over the incubation period, an increase in bacterial abundance (BA) and bacterial production (BP) was observed first in the G treatment, followed then by the D and finally A treatments, with bacterial growth rates significantly higher in the G and D treatments than the A treatment. Following this growth, maxima of BP reached were similar in the D (879 <span class="inline-formula">±</span> 64 ng C L<span class="inline-formula"><sup>−1</sup></span> h<span class="inline-formula"><sup>−1</sup></span>; <span class="inline-formula"><i>n</i>=3</span>) and G (648 <span class="inline-formula">±</span> 156 ng C L<span class="inline-formula"><sup>−1</sup></span> h<span class="inline-formula"><sup>−1</sup></span>; <span class="inline-formula"><i>n</i>=3</span>) treatments and were significantly higher than in the A treatment (124 ng C L<span class="inline-formula"><sup>−1</sup></span> h<span class="inline-formula"><sup>−1</sup></span>; <span class="inline-formula"><i>n</i>=2</span>). The DOC consumed over the incubation period was similar in the A (9 <span class="inline-formula">µ</span>M; <span class="inline-formula"><i>n</i>=2</span>) and D (9 <span class="inline-formula">±</span> 2 <span class="inline-formula">µ</span>M; <span class="inline-formula"><i>n</i>=3</span>) treatments and was significantly lower than in the G treatment (22 <span class="inline-formula">±</span> 3 <span class="inline-formula">µ</span>M; <span class="inline-formula"><i>n</i>=3</span>). Nevertheless, the bacterial growth efficiency (BGE) in the D treatment (14.2 <span class="inline-formula">±</span> 5.5 %; <span class="inline-formula"><i>n</i>=3</span>) compared well with the G treatment (7.6 <span class="inline-formula">±</span> 2 %; <span class="inline-formula"><i>n</i>=3</span>), suggesting that the metabolic use of the labile DOC fraction in both conditions was energetically equivalent. In contrast, the BGE in the A treatment was lower (1.7 %; <span class="inline-formula"><i>n</i>=2</span>), suggesting that most of the used labile DOC was catabolized. The results obtained in this study highlight the potential of aerosol organic matter to sustain the metabolism of marine heterotrophs and stress the need to include this external source of organic carbon in biogeochemical models for a better constraining of the carbon budget.</p>
url https://bg.copernicus.org/articles/17/6271/2020/bg-17-6271-2020.pdf
work_keys_str_mv AT kdjaoudi potentialbioavailabilityoforganicmatterfromatmosphericparticlestomarineheterotrophicbacteria
AT kdjaoudi potentialbioavailabilityoforganicmatterfromatmosphericparticlestomarineheterotrophicbacteria
AT fvanwambeke potentialbioavailabilityoforganicmatterfromatmosphericparticlestomarineheterotrophicbacteria
AT abarani potentialbioavailabilityoforganicmatterfromatmosphericparticlestomarineheterotrophicbacteria
AT nbhairy potentialbioavailabilityoforganicmatterfromatmosphericparticlestomarineheterotrophicbacteria
AT schevaillier potentialbioavailabilityoforganicmatterfromatmosphericparticlestomarineheterotrophicbacteria
AT kdesboeufs potentialbioavailabilityoforganicmatterfromatmosphericparticlestomarineheterotrophicbacteria
AT snunige potentialbioavailabilityoforganicmatterfromatmosphericparticlestomarineheterotrophicbacteria
AT mlabiadh potentialbioavailabilityoforganicmatterfromatmosphericparticlestomarineheterotrophicbacteria
AT thenrydestureaux potentialbioavailabilityoforganicmatterfromatmosphericparticlestomarineheterotrophicbacteria
AT dlefevre potentialbioavailabilityoforganicmatterfromatmosphericparticlestomarineheterotrophicbacteria
AT anouara potentialbioavailabilityoforganicmatterfromatmosphericparticlestomarineheterotrophicbacteria
AT cpanagiotopoulos potentialbioavailabilityoforganicmatterfromatmosphericparticlestomarineheterotrophicbacteria
AT mtedetti potentialbioavailabilityoforganicmatterfromatmosphericparticlestomarineheterotrophicbacteria
AT epulidovillena potentialbioavailabilityoforganicmatterfromatmosphericparticlestomarineheterotrophicbacteria
_version_ 1724383704924553216
spelling doaj-66c5dac69962453b942dc40cb2529c5e2020-12-14T12:12:47ZengCopernicus PublicationsBiogeosciences1726-41701726-41892020-12-01176271628510.5194/bg-17-6271-2020Potential bioavailability of organic matter from atmospheric particles to marine heterotrophic bacteriaK. Djaoudi0K. Djaoudi1F. Van Wambeke2A. Barani3N. Bhairy4S. Chevaillier5K. Desboeufs6S. Nunige7M. Labiadh8T. Henry des Tureaux9D. Lefèvre10A. Nouara11C. Panagiotopoulos12M. Tedetti13E. Pulido-Villena14Aix-Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, FranceMolecular and Cellular Biology, The University of Arizona, Tucson, USAAix-Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, FranceAix-Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, FranceAix-Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, FranceLISA, UMR7583, Université de Paris, Université Paris-Est-Créteil, Institut Pierre Simon Laplace (IPSL), Créteil, FranceLISA, UMR7583, Université de Paris, Université Paris-Est-Créteil, Institut Pierre Simon Laplace (IPSL), Créteil, FranceAix-Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, FranceIRA (Institut des Régions Arides) de Médenine, El Fjé4119, Médenine, TunisiaiEES Paris (Institut d'Ecologie et des Sciences de l'Environnement de Paris), UMR IRD 242, Université Paris Est Créteil–Sorbonne Université–CNRS–INRA–Université de Paris, 93143 Bondy, FranceAix-Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, FranceAix-Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, FranceAix-Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, FranceAix-Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, FranceAix-Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France<p>The surface ocean receives important amounts of organic carbon from atmospheric deposition. The degree of bioavailability of this source of organic carbon will determine its impact on the marine carbon cycle. In this study, the potential availability of dissolved organic carbon (DOC) leached from both desert dust and anthropogenic aerosols to marine heterotrophic bacteria was investigated. The experimental design was based on 16 d incubations, in the dark, of a marine bacterial inoculum into artificial seawater amended with water-soluble Saharan dust (D treatment) and anthropogenic (A treatment) aerosols, so that the initial DOC concentration was similar between treatments. Glucose-amended (G) and non-amended (control) treatments were run in parallel. Over the incubation period, an increase in bacterial abundance (BA) and bacterial production (BP) was observed first in the G treatment, followed then by the D and finally A treatments, with bacterial growth rates significantly higher in the G and D treatments than the A treatment. Following this growth, maxima of BP reached were similar in the D (879 <span class="inline-formula">±</span> 64 ng C L<span class="inline-formula"><sup>−1</sup></span> h<span class="inline-formula"><sup>−1</sup></span>; <span class="inline-formula"><i>n</i>=3</span>) and G (648 <span class="inline-formula">±</span> 156 ng C L<span class="inline-formula"><sup>−1</sup></span> h<span class="inline-formula"><sup>−1</sup></span>; <span class="inline-formula"><i>n</i>=3</span>) treatments and were significantly higher than in the A treatment (124 ng C L<span class="inline-formula"><sup>−1</sup></span> h<span class="inline-formula"><sup>−1</sup></span>; <span class="inline-formula"><i>n</i>=2</span>). The DOC consumed over the incubation period was similar in the A (9 <span class="inline-formula">µ</span>M; <span class="inline-formula"><i>n</i>=2</span>) and D (9 <span class="inline-formula">±</span> 2 <span class="inline-formula">µ</span>M; <span class="inline-formula"><i>n</i>=3</span>) treatments and was significantly lower than in the G treatment (22 <span class="inline-formula">±</span> 3 <span class="inline-formula">µ</span>M; <span class="inline-formula"><i>n</i>=3</span>). Nevertheless, the bacterial growth efficiency (BGE) in the D treatment (14.2 <span class="inline-formula">±</span> 5.5 %; <span class="inline-formula"><i>n</i>=3</span>) compared well with the G treatment (7.6 <span class="inline-formula">±</span> 2 %; <span class="inline-formula"><i>n</i>=3</span>), suggesting that the metabolic use of the labile DOC fraction in both conditions was energetically equivalent. In contrast, the BGE in the A treatment was lower (1.7 %; <span class="inline-formula"><i>n</i>=2</span>), suggesting that most of the used labile DOC was catabolized. The results obtained in this study highlight the potential of aerosol organic matter to sustain the metabolism of marine heterotrophs and stress the need to include this external source of organic carbon in biogeochemical models for a better constraining of the carbon budget.</p>https://bg.copernicus.org/articles/17/6271/2020/bg-17-6271-2020.pdf