Soil compaction on traffic lane due to soil tillage and sugarcane mechanical harvesting operations
ABSTRACT: Mechanical sugarcane harvesting increases soil compaction due to the intense traffic of agricultural machinery, reducing longevity of sugarcane crops. In order to mitigate the harmful effects caused by agricultural traffic on the soil structure in sugarcane fields, this study evaluated imp...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidade de São Paulo
|
Series: | Scientia Agricola |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162019001600509&lng=en&tlng=en |
id |
doaj-669e5da5043945d6993f53c4d33ba74f |
---|---|
record_format |
Article |
spelling |
doaj-669e5da5043945d6993f53c4d33ba74f2020-11-25T01:49:37ZengUniversidade de São PauloScientia Agricola1678-992X76650951710.1590/1678-992x-2018-0052S0103-90162019001600509Soil compaction on traffic lane due to soil tillage and sugarcane mechanical harvesting operationsWellingthon da Silva Guimarães JúnnyorIsabella Clerici De MariaCezar Francisco Araujo-JuniorCamila Cassante de LimaAndré César VittiGetulio Coutinho FigueiredoSonia Carmela Falci DechenABSTRACT: Mechanical sugarcane harvesting increases soil compaction due to the intense traffic of agricultural machinery, reducing longevity of sugarcane crops. In order to mitigate the harmful effects caused by agricultural traffic on the soil structure in sugarcane fields, this study evaluated impacts of mechanical sugarcane harvesting on traffic lane under two soil tillage systems based on load bearing capacity models. The experiment was carried out in the region of Piracicaba, state of São Paulo, Brazil, on a Rhodic Nitisol, under conventional tillage (CT) and deep strip-tillage (DST). For CT soil tillage was applied to the entire area with a heavy disk harrow, at operating depths from 0.20 to 0.30 m followed by a leveling harrow at a depth of 0.15 m. For DST, soil tillage was performed in part of the area at a depth of 0.80 m, forming strip beds for sugarcane planting, while the traffic lanes were not disturbed. Undisturbed soil samples from traffic lanes were used in the uniaxial compression test to quantify preconsolidation pressure and to model the soil load bearing capacity. The surface layer (0.00-0.10 m) was most susceptible to compaction, regardless of the tillage system (CT or DST) used. In the DST, the traffic lane maintained the previous soil stress history and presented higher load bearing capacity (LBC) than the traffic lane in the CT. As in CT the soil was tilled, the stress history was discontinued. This larger LBC in DTS minimized the impacts of the sugarcane harvest. Under CT, additional soil compaction due to mechanical sugarcane harvesting in the traffic lane was observed after the second sugarcane harvest. There was a reduction in load bearing capacity from 165 kPa to 68 kPa under CT and from 230 kPa to 108 kPa under DST, from the first to the second harvest at surface layer. Water content at mechanical harvesting was the most relevant factor to maximize impacts on the soil structure in traffic lanes, for both tillage systems.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162019001600509&lng=en&tlng=enload bearing capacitysoil stress distributionpreconsolidation pressuremodelingenvironmental sustainability |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wellingthon da Silva Guimarães Júnnyor Isabella Clerici De Maria Cezar Francisco Araujo-Junior Camila Cassante de Lima André César Vitti Getulio Coutinho Figueiredo Sonia Carmela Falci Dechen |
spellingShingle |
Wellingthon da Silva Guimarães Júnnyor Isabella Clerici De Maria Cezar Francisco Araujo-Junior Camila Cassante de Lima André César Vitti Getulio Coutinho Figueiredo Sonia Carmela Falci Dechen Soil compaction on traffic lane due to soil tillage and sugarcane mechanical harvesting operations Scientia Agricola load bearing capacity soil stress distribution preconsolidation pressure modeling environmental sustainability |
author_facet |
Wellingthon da Silva Guimarães Júnnyor Isabella Clerici De Maria Cezar Francisco Araujo-Junior Camila Cassante de Lima André César Vitti Getulio Coutinho Figueiredo Sonia Carmela Falci Dechen |
author_sort |
Wellingthon da Silva Guimarães Júnnyor |
title |
Soil compaction on traffic lane due to soil tillage and sugarcane mechanical harvesting operations |
title_short |
Soil compaction on traffic lane due to soil tillage and sugarcane mechanical harvesting operations |
title_full |
Soil compaction on traffic lane due to soil tillage and sugarcane mechanical harvesting operations |
title_fullStr |
Soil compaction on traffic lane due to soil tillage and sugarcane mechanical harvesting operations |
title_full_unstemmed |
Soil compaction on traffic lane due to soil tillage and sugarcane mechanical harvesting operations |
title_sort |
soil compaction on traffic lane due to soil tillage and sugarcane mechanical harvesting operations |
publisher |
Universidade de São Paulo |
series |
Scientia Agricola |
issn |
1678-992X |
description |
ABSTRACT: Mechanical sugarcane harvesting increases soil compaction due to the intense traffic of agricultural machinery, reducing longevity of sugarcane crops. In order to mitigate the harmful effects caused by agricultural traffic on the soil structure in sugarcane fields, this study evaluated impacts of mechanical sugarcane harvesting on traffic lane under two soil tillage systems based on load bearing capacity models. The experiment was carried out in the region of Piracicaba, state of São Paulo, Brazil, on a Rhodic Nitisol, under conventional tillage (CT) and deep strip-tillage (DST). For CT soil tillage was applied to the entire area with a heavy disk harrow, at operating depths from 0.20 to 0.30 m followed by a leveling harrow at a depth of 0.15 m. For DST, soil tillage was performed in part of the area at a depth of 0.80 m, forming strip beds for sugarcane planting, while the traffic lanes were not disturbed. Undisturbed soil samples from traffic lanes were used in the uniaxial compression test to quantify preconsolidation pressure and to model the soil load bearing capacity. The surface layer (0.00-0.10 m) was most susceptible to compaction, regardless of the tillage system (CT or DST) used. In the DST, the traffic lane maintained the previous soil stress history and presented higher load bearing capacity (LBC) than the traffic lane in the CT. As in CT the soil was tilled, the stress history was discontinued. This larger LBC in DTS minimized the impacts of the sugarcane harvest. Under CT, additional soil compaction due to mechanical sugarcane harvesting in the traffic lane was observed after the second sugarcane harvest. There was a reduction in load bearing capacity from 165 kPa to 68 kPa under CT and from 230 kPa to 108 kPa under DST, from the first to the second harvest at surface layer. Water content at mechanical harvesting was the most relevant factor to maximize impacts on the soil structure in traffic lanes, for both tillage systems. |
topic |
load bearing capacity soil stress distribution preconsolidation pressure modeling environmental sustainability |
url |
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162019001600509&lng=en&tlng=en |
work_keys_str_mv |
AT wellingthondasilvaguimaraesjunnyor soilcompactionontrafficlaneduetosoiltillageandsugarcanemechanicalharvestingoperations AT isabellaclericidemaria soilcompactionontrafficlaneduetosoiltillageandsugarcanemechanicalharvestingoperations AT cezarfranciscoaraujojunior soilcompactionontrafficlaneduetosoiltillageandsugarcanemechanicalharvestingoperations AT camilacassantedelima soilcompactionontrafficlaneduetosoiltillageandsugarcanemechanicalharvestingoperations AT andrecesarvitti soilcompactionontrafficlaneduetosoiltillageandsugarcanemechanicalharvestingoperations AT getuliocoutinhofigueiredo soilcompactionontrafficlaneduetosoiltillageandsugarcanemechanicalharvestingoperations AT soniacarmelafalcidechen soilcompactionontrafficlaneduetosoiltillageandsugarcanemechanicalharvestingoperations |
_version_ |
1725006152875376640 |