A Novel Improved ELM Algorithm for a Real Industrial Application
It is well known that the feedforward neural networks meet numbers of difficulties in the applications because of its slow learning speed. The extreme learning machine (ELM) is a new single hidden layer feedforward neural network method aiming at improving the training speed. Nowadays ELM algorithm...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2014/824765 |
Summary: | It is well known that the feedforward neural networks meet numbers of difficulties in the applications because of its slow learning speed. The extreme learning machine (ELM) is a new single hidden layer feedforward neural network method aiming at improving the training speed. Nowadays ELM algorithm has received wide application with its good generalization performance under fast learning
speed. However, there are still several problems needed to be solved in ELM. In this paper, a new improved ELM algorithm named R-ELM is proposed to handle the multicollinear problem appearing in calculation of the ELM algorithm. The proposed algorithm is employed in bearing fault detection using stator current monitoring. Simulative results show that R-ELM algorithm has better stability and
generalization performance compared with the original ELM and the other neural network methods. |
---|---|
ISSN: | 1024-123X 1563-5147 |