Some New Fractional Estimates of Inequalities for LR-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-Convex Interval-Valued Functions by Means of Pseudo Order Relation

It is a familiar fact that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models whose data are composed of inaccuracies that may occur from certain kinds of measurements. In interval analysis, both the inclusion relat...

Full description

Bibliographic Details
Main Authors: Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Dumitru Baleanu, Juan Luis García Guirao
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/10/3/175
id doaj-6683ca786c2b4ac8911a2d2450d9a01a
record_format Article
spelling doaj-6683ca786c2b4ac8911a2d2450d9a01a2021-09-25T23:44:48ZengMDPI AGAxioms2075-16802021-07-011017517510.3390/axioms10030175Some New Fractional Estimates of Inequalities for LR-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-Convex Interval-Valued Functions by Means of Pseudo Order RelationMuhammad Bilal Khan0Pshtiwan Othman Mohammed1Muhammad Aslam Noor2Dumitru Baleanu3Juan Luis García Guirao4Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, PakistanDepartment of Mathematics, College of Education, University of Sulaimani, Sulaimani 46001, Kurdistan Region, IraqDepartment of Mathematics, COMSATS University Islamabad, Islamabad 44000, PakistanDepartment of Mathematics, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara, TurkeyDepartamento de Matemática Aplicada y Estadística, Campus de la Muralla, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, SpainIt is a familiar fact that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models whose data are composed of inaccuracies that may occur from certain kinds of measurements. In interval analysis, both the inclusion relation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mo>⊆</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and pseudo order relation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mo>≤</mo><mi>p</mi></msub></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are two different concepts. In this article, by using pseudo order relation, we introduce the new class of nonconvex functions known as LR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>-convex interval-valued functions (LR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>-convex-IVFs). With the help of this relation, we establish a strong relationship between LR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>-convex-IVFs and Hermite-Hadamard type inequalities (<i>HH</i>-type inequalities) via Katugampola fractional integral operator. Moreover, we have shown that our results include a wide class of new and known inequalities for LR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>-convex-IVFs and their variant forms as special cases. Useful examples that demonstrate the applicability of the theory proposed in this study are given. The concepts and techniques of this paper may be a starting point for further research in this area.https://www.mdpi.com/2075-1680/10/3/175LR-<i>p</i>-convex interval-valued functionKatugampola fractional integral operatorHermite-Hadamard type inequalityHermite-Hadamard-Fejér inequality
collection DOAJ
language English
format Article
sources DOAJ
author Muhammad Bilal Khan
Pshtiwan Othman Mohammed
Muhammad Aslam Noor
Dumitru Baleanu
Juan Luis García Guirao
spellingShingle Muhammad Bilal Khan
Pshtiwan Othman Mohammed
Muhammad Aslam Noor
Dumitru Baleanu
Juan Luis García Guirao
Some New Fractional Estimates of Inequalities for LR-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-Convex Interval-Valued Functions by Means of Pseudo Order Relation
Axioms
LR-<i>p</i>-convex interval-valued function
Katugampola fractional integral operator
Hermite-Hadamard type inequality
Hermite-Hadamard-Fejér inequality
author_facet Muhammad Bilal Khan
Pshtiwan Othman Mohammed
Muhammad Aslam Noor
Dumitru Baleanu
Juan Luis García Guirao
author_sort Muhammad Bilal Khan
title Some New Fractional Estimates of Inequalities for LR-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-Convex Interval-Valued Functions by Means of Pseudo Order Relation
title_short Some New Fractional Estimates of Inequalities for LR-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-Convex Interval-Valued Functions by Means of Pseudo Order Relation
title_full Some New Fractional Estimates of Inequalities for LR-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-Convex Interval-Valued Functions by Means of Pseudo Order Relation
title_fullStr Some New Fractional Estimates of Inequalities for LR-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-Convex Interval-Valued Functions by Means of Pseudo Order Relation
title_full_unstemmed Some New Fractional Estimates of Inequalities for LR-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-Convex Interval-Valued Functions by Means of Pseudo Order Relation
title_sort some new fractional estimates of inequalities for lr-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-convex interval-valued functions by means of pseudo order relation
publisher MDPI AG
series Axioms
issn 2075-1680
publishDate 2021-07-01
description It is a familiar fact that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models whose data are composed of inaccuracies that may occur from certain kinds of measurements. In interval analysis, both the inclusion relation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mo>⊆</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and pseudo order relation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mo>≤</mo><mi>p</mi></msub></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are two different concepts. In this article, by using pseudo order relation, we introduce the new class of nonconvex functions known as LR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>-convex interval-valued functions (LR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>-convex-IVFs). With the help of this relation, we establish a strong relationship between LR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>-convex-IVFs and Hermite-Hadamard type inequalities (<i>HH</i>-type inequalities) via Katugampola fractional integral operator. Moreover, we have shown that our results include a wide class of new and known inequalities for LR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>-convex-IVFs and their variant forms as special cases. Useful examples that demonstrate the applicability of the theory proposed in this study are given. The concepts and techniques of this paper may be a starting point for further research in this area.
topic LR-<i>p</i>-convex interval-valued function
Katugampola fractional integral operator
Hermite-Hadamard type inequality
Hermite-Hadamard-Fejér inequality
url https://www.mdpi.com/2075-1680/10/3/175
work_keys_str_mv AT muhammadbilalkhan somenewfractionalestimatesofinequalitiesforlrinlineformulamathdisplayinlinesemanticsmrowmipmimrowsemanticsmathinlineformulaconvexintervalvaluedfunctionsbymeansofpseudoorderrelation
AT pshtiwanothmanmohammed somenewfractionalestimatesofinequalitiesforlrinlineformulamathdisplayinlinesemanticsmrowmipmimrowsemanticsmathinlineformulaconvexintervalvaluedfunctionsbymeansofpseudoorderrelation
AT muhammadaslamnoor somenewfractionalestimatesofinequalitiesforlrinlineformulamathdisplayinlinesemanticsmrowmipmimrowsemanticsmathinlineformulaconvexintervalvaluedfunctionsbymeansofpseudoorderrelation
AT dumitrubaleanu somenewfractionalestimatesofinequalitiesforlrinlineformulamathdisplayinlinesemanticsmrowmipmimrowsemanticsmathinlineformulaconvexintervalvaluedfunctionsbymeansofpseudoorderrelation
AT juanluisgarciaguirao somenewfractionalestimatesofinequalitiesforlrinlineformulamathdisplayinlinesemanticsmrowmipmimrowsemanticsmathinlineformulaconvexintervalvaluedfunctionsbymeansofpseudoorderrelation
_version_ 1717368106934861824