Some New Fractional Estimates of Inequalities for LR-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-Convex Interval-Valued Functions by Means of Pseudo Order Relation
It is a familiar fact that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models whose data are composed of inaccuracies that may occur from certain kinds of measurements. In interval analysis, both the inclusion relat...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/10/3/175 |
id |
doaj-6683ca786c2b4ac8911a2d2450d9a01a |
---|---|
record_format |
Article |
spelling |
doaj-6683ca786c2b4ac8911a2d2450d9a01a2021-09-25T23:44:48ZengMDPI AGAxioms2075-16802021-07-011017517510.3390/axioms10030175Some New Fractional Estimates of Inequalities for LR-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-Convex Interval-Valued Functions by Means of Pseudo Order RelationMuhammad Bilal Khan0Pshtiwan Othman Mohammed1Muhammad Aslam Noor2Dumitru Baleanu3Juan Luis García Guirao4Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, PakistanDepartment of Mathematics, College of Education, University of Sulaimani, Sulaimani 46001, Kurdistan Region, IraqDepartment of Mathematics, COMSATS University Islamabad, Islamabad 44000, PakistanDepartment of Mathematics, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara, TurkeyDepartamento de Matemática Aplicada y Estadística, Campus de la Muralla, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, SpainIt is a familiar fact that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models whose data are composed of inaccuracies that may occur from certain kinds of measurements. In interval analysis, both the inclusion relation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mo>⊆</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and pseudo order relation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mo>≤</mo><mi>p</mi></msub></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are two different concepts. In this article, by using pseudo order relation, we introduce the new class of nonconvex functions known as LR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>-convex interval-valued functions (LR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>-convex-IVFs). With the help of this relation, we establish a strong relationship between LR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>-convex-IVFs and Hermite-Hadamard type inequalities (<i>HH</i>-type inequalities) via Katugampola fractional integral operator. Moreover, we have shown that our results include a wide class of new and known inequalities for LR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>-convex-IVFs and their variant forms as special cases. Useful examples that demonstrate the applicability of the theory proposed in this study are given. The concepts and techniques of this paper may be a starting point for further research in this area.https://www.mdpi.com/2075-1680/10/3/175LR-<i>p</i>-convex interval-valued functionKatugampola fractional integral operatorHermite-Hadamard type inequalityHermite-Hadamard-Fejér inequality |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Muhammad Bilal Khan Pshtiwan Othman Mohammed Muhammad Aslam Noor Dumitru Baleanu Juan Luis García Guirao |
spellingShingle |
Muhammad Bilal Khan Pshtiwan Othman Mohammed Muhammad Aslam Noor Dumitru Baleanu Juan Luis García Guirao Some New Fractional Estimates of Inequalities for LR-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-Convex Interval-Valued Functions by Means of Pseudo Order Relation Axioms LR-<i>p</i>-convex interval-valued function Katugampola fractional integral operator Hermite-Hadamard type inequality Hermite-Hadamard-Fejér inequality |
author_facet |
Muhammad Bilal Khan Pshtiwan Othman Mohammed Muhammad Aslam Noor Dumitru Baleanu Juan Luis García Guirao |
author_sort |
Muhammad Bilal Khan |
title |
Some New Fractional Estimates of Inequalities for LR-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-Convex Interval-Valued Functions by Means of Pseudo Order Relation |
title_short |
Some New Fractional Estimates of Inequalities for LR-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-Convex Interval-Valued Functions by Means of Pseudo Order Relation |
title_full |
Some New Fractional Estimates of Inequalities for LR-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-Convex Interval-Valued Functions by Means of Pseudo Order Relation |
title_fullStr |
Some New Fractional Estimates of Inequalities for LR-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-Convex Interval-Valued Functions by Means of Pseudo Order Relation |
title_full_unstemmed |
Some New Fractional Estimates of Inequalities for LR-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-Convex Interval-Valued Functions by Means of Pseudo Order Relation |
title_sort |
some new fractional estimates of inequalities for lr-<inline-formula><math display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula>-convex interval-valued functions by means of pseudo order relation |
publisher |
MDPI AG |
series |
Axioms |
issn |
2075-1680 |
publishDate |
2021-07-01 |
description |
It is a familiar fact that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models whose data are composed of inaccuracies that may occur from certain kinds of measurements. In interval analysis, both the inclusion relation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mo>⊆</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and pseudo order relation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mo>≤</mo><mi>p</mi></msub></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are two different concepts. In this article, by using pseudo order relation, we introduce the new class of nonconvex functions known as LR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>-convex interval-valued functions (LR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>-convex-IVFs). With the help of this relation, we establish a strong relationship between LR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>-convex-IVFs and Hermite-Hadamard type inequalities (<i>HH</i>-type inequalities) via Katugampola fractional integral operator. Moreover, we have shown that our results include a wide class of new and known inequalities for LR-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>p</mi></semantics></math></inline-formula>-convex-IVFs and their variant forms as special cases. Useful examples that demonstrate the applicability of the theory proposed in this study are given. The concepts and techniques of this paper may be a starting point for further research in this area. |
topic |
LR-<i>p</i>-convex interval-valued function Katugampola fractional integral operator Hermite-Hadamard type inequality Hermite-Hadamard-Fejér inequality |
url |
https://www.mdpi.com/2075-1680/10/3/175 |
work_keys_str_mv |
AT muhammadbilalkhan somenewfractionalestimatesofinequalitiesforlrinlineformulamathdisplayinlinesemanticsmrowmipmimrowsemanticsmathinlineformulaconvexintervalvaluedfunctionsbymeansofpseudoorderrelation AT pshtiwanothmanmohammed somenewfractionalestimatesofinequalitiesforlrinlineformulamathdisplayinlinesemanticsmrowmipmimrowsemanticsmathinlineformulaconvexintervalvaluedfunctionsbymeansofpseudoorderrelation AT muhammadaslamnoor somenewfractionalestimatesofinequalitiesforlrinlineformulamathdisplayinlinesemanticsmrowmipmimrowsemanticsmathinlineformulaconvexintervalvaluedfunctionsbymeansofpseudoorderrelation AT dumitrubaleanu somenewfractionalestimatesofinequalitiesforlrinlineformulamathdisplayinlinesemanticsmrowmipmimrowsemanticsmathinlineformulaconvexintervalvaluedfunctionsbymeansofpseudoorderrelation AT juanluisgarciaguirao somenewfractionalestimatesofinequalitiesforlrinlineformulamathdisplayinlinesemanticsmrowmipmimrowsemanticsmathinlineformulaconvexintervalvaluedfunctionsbymeansofpseudoorderrelation |
_version_ |
1717368106934861824 |