Fault Reconstruction Approach for Distributed Coordinated Spacecraft Attitude Control System

This work presents a novel fault reconstruction approach for a large-scale system, that is, a distributed coordinated spacecraft attitude control system. The attitude of all the spacecrafts in this distributed system is controlled by using thrusters. All possible faults of thruster including thrust...

Full description

Bibliographic Details
Main Authors: Mingyi Huo, Yanning Guo, Xing Huo
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2015/364138
Description
Summary:This work presents a novel fault reconstruction approach for a large-scale system, that is, a distributed coordinated spacecraft attitude control system. The attitude of all the spacecrafts in this distributed system is controlled by using thrusters. All possible faults of thruster including thrust magnitude error and alignment error are investigated. As a stepping stone, the mathematical model of thruster is firstly established based on the thruster configuration. On the basis of this, a sliding mode observer is then proposed to reconstruct faults in each agent of the coordinated control system. A Lyapunov-based analysis shows that the observer asymptotically converges to the actual faults. The key feature of this fault reconstruction approach is that it can achieve a faster reconstruction of the fault in comparison with the conventional fault reconstruction schemes. It can globally reconstruct thruster faults with zero reconstruction error, and this is accomplished within finite time. The effectiveness of the proposed approach is analytically authenticated via simulation study.
ISSN:1024-123X
1563-5147