A periodic solution for the local fractional Boussinesq equation on cantor sets

In this paper, the periodic solution for the local fractional Boussinesq equation can be obtained in the sense of the local fractional derivative. It is given by applying direct integration with symmetry condition. Meanwhile, the periodic solution of the non-differentiable type with generalized func...

Full description

Bibliographic Details
Main Authors: Guo Xiu-Rong, Chen Gui-Lei, Guo Mei, Liu Zheng-Tao
Format: Article
Language:English
Published: VINCA Institute of Nuclear Sciences 2019-01-01
Series:Thermal Science
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/0354-9836/2019/0354-98361900255G.pdf
id doaj-666a0b48f8484e9ea842206724cef107
record_format Article
spelling doaj-666a0b48f8484e9ea842206724cef1072021-01-02T14:38:51ZengVINCA Institute of Nuclear SciencesThermal Science0354-98362019-01-01236 Part B3719372310.2298/TSCI180822255G0354-98361900255GA periodic solution for the local fractional Boussinesq equation on cantor setsGuo Xiu-Rong0Chen Gui-Lei1Guo Mei2Liu Zheng-Tao3Basic Courses, Shandong University of Science and Technology, Tai’an, China + College of Mathematics, China University of Mining and Technology, XuZhou, ChinaBasic Courses, Shandong University of Science and Technology, Tai’an, ChinaShandong Tonghui Architectural Design Co. Ltd.,Tai'an, ChinaShandong Tonghui Architectural Design Co. Ltd.,Taian, ChinaIn this paper, the periodic solution for the local fractional Boussinesq equation can be obtained in the sense of the local fractional derivative. It is given by applying direct integration with symmetry condition. Meanwhile, the periodic solution of the non-differentiable type with generalized functions defined on Cantor sets is analyzed. As a result, we have a new point to look the local fractional Boussinesq equation through the local fractional derivative theory.http://www.doiserbia.nb.rs/img/doi/0354-9836/2019/0354-98361900255G.pdflocal fractional derivativelocal fractional boussinesq equationperiodic solution
collection DOAJ
language English
format Article
sources DOAJ
author Guo Xiu-Rong
Chen Gui-Lei
Guo Mei
Liu Zheng-Tao
spellingShingle Guo Xiu-Rong
Chen Gui-Lei
Guo Mei
Liu Zheng-Tao
A periodic solution for the local fractional Boussinesq equation on cantor sets
Thermal Science
local fractional derivative
local fractional boussinesq equation
periodic solution
author_facet Guo Xiu-Rong
Chen Gui-Lei
Guo Mei
Liu Zheng-Tao
author_sort Guo Xiu-Rong
title A periodic solution for the local fractional Boussinesq equation on cantor sets
title_short A periodic solution for the local fractional Boussinesq equation on cantor sets
title_full A periodic solution for the local fractional Boussinesq equation on cantor sets
title_fullStr A periodic solution for the local fractional Boussinesq equation on cantor sets
title_full_unstemmed A periodic solution for the local fractional Boussinesq equation on cantor sets
title_sort periodic solution for the local fractional boussinesq equation on cantor sets
publisher VINCA Institute of Nuclear Sciences
series Thermal Science
issn 0354-9836
publishDate 2019-01-01
description In this paper, the periodic solution for the local fractional Boussinesq equation can be obtained in the sense of the local fractional derivative. It is given by applying direct integration with symmetry condition. Meanwhile, the periodic solution of the non-differentiable type with generalized functions defined on Cantor sets is analyzed. As a result, we have a new point to look the local fractional Boussinesq equation through the local fractional derivative theory.
topic local fractional derivative
local fractional boussinesq equation
periodic solution
url http://www.doiserbia.nb.rs/img/doi/0354-9836/2019/0354-98361900255G.pdf
work_keys_str_mv AT guoxiurong aperiodicsolutionforthelocalfractionalboussinesqequationoncantorsets
AT chenguilei aperiodicsolutionforthelocalfractionalboussinesqequationoncantorsets
AT guomei aperiodicsolutionforthelocalfractionalboussinesqequationoncantorsets
AT liuzhengtao aperiodicsolutionforthelocalfractionalboussinesqequationoncantorsets
AT guoxiurong periodicsolutionforthelocalfractionalboussinesqequationoncantorsets
AT chenguilei periodicsolutionforthelocalfractionalboussinesqequationoncantorsets
AT guomei periodicsolutionforthelocalfractionalboussinesqequationoncantorsets
AT liuzhengtao periodicsolutionforthelocalfractionalboussinesqequationoncantorsets
_version_ 1724353383992655872