An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques

This paper proposes an innovative identification approach of nonlinear stochastic systems using Hammerstein–Wiener (HW) model with output-error autoregressive (OEA) noise. Two fuzzy systems are suggested for the identification of the input and output nonlinear blocks of a proposed model from given i...

Full description

Bibliographic Details
Main Authors: Donia Ben Halima Abid, Saif Eddine Abouda, Hanane Medhaffar, Mohamed Chtourou
Format: Article
Language:English
Published: Hindawi-Wiley 2021-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2021/8525090
id doaj-664f0814a86a48a1a7b9537d8efe7e79
record_format Article
spelling doaj-664f0814a86a48a1a7b9537d8efe7e792021-08-30T00:01:14ZengHindawi-WileyComplexity1099-05262021-01-01202110.1155/2021/8525090An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering TechniquesDonia Ben Halima Abid0Saif Eddine Abouda1Hanane Medhaffar2Mohamed Chtourou3University of SfaxUniversity of SfaxUniversity of SfaxUniversity of SfaxThis paper proposes an innovative identification approach of nonlinear stochastic systems using Hammerstein–Wiener (HW) model with output-error autoregressive (OEA) noise. Two fuzzy systems are suggested for the identification of the input and output nonlinear blocks of a proposed model from given input-output data measurements. In this work, the need for the commonly used assumptions including well-known structure of input and/or output nonlinearities and/or reversible nonlinear output is eliminated by replacing the intermediate variables and noise with their estimates. Four parametric estimation algorithms to identify the proposed fuzzy-type stochastic output-error autoregressive HW (FSOEAHW) model are derived based on backpropagation algorithm and multi-innovation and data filtering identification techniques. The proposed algorithms are improved backpropagation gradient (IBPG) algorithm, multi-innovation IBPG (MIIBPG) algorithm, a data filtering IBPG (FIBPG) algorithm, and a multi-innovation-based FIBPG (MIFIBPG) algorithm. The convergence of the parameter estimation algorithms is studied. The effectiveness of the proposed algorithms is shown by a given simulation example.http://dx.doi.org/10.1155/2021/8525090
collection DOAJ
language English
format Article
sources DOAJ
author Donia Ben Halima Abid
Saif Eddine Abouda
Hanane Medhaffar
Mohamed Chtourou
spellingShingle Donia Ben Halima Abid
Saif Eddine Abouda
Hanane Medhaffar
Mohamed Chtourou
An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques
Complexity
author_facet Donia Ben Halima Abid
Saif Eddine Abouda
Hanane Medhaffar
Mohamed Chtourou
author_sort Donia Ben Halima Abid
title An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques
title_short An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques
title_full An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques
title_fullStr An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques
title_full_unstemmed An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques
title_sort improved method for stochastic nonlinear system’s identification using fuzzy-type output-error autoregressive hammerstein–wiener model based on gradient algorithm, multi-innovation, and data filtering techniques
publisher Hindawi-Wiley
series Complexity
issn 1099-0526
publishDate 2021-01-01
description This paper proposes an innovative identification approach of nonlinear stochastic systems using Hammerstein–Wiener (HW) model with output-error autoregressive (OEA) noise. Two fuzzy systems are suggested for the identification of the input and output nonlinear blocks of a proposed model from given input-output data measurements. In this work, the need for the commonly used assumptions including well-known structure of input and/or output nonlinearities and/or reversible nonlinear output is eliminated by replacing the intermediate variables and noise with their estimates. Four parametric estimation algorithms to identify the proposed fuzzy-type stochastic output-error autoregressive HW (FSOEAHW) model are derived based on backpropagation algorithm and multi-innovation and data filtering identification techniques. The proposed algorithms are improved backpropagation gradient (IBPG) algorithm, multi-innovation IBPG (MIIBPG) algorithm, a data filtering IBPG (FIBPG) algorithm, and a multi-innovation-based FIBPG (MIFIBPG) algorithm. The convergence of the parameter estimation algorithms is studied. The effectiveness of the proposed algorithms is shown by a given simulation example.
url http://dx.doi.org/10.1155/2021/8525090
work_keys_str_mv AT doniabenhalimaabid animprovedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques
AT saifeddineabouda animprovedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques
AT hananemedhaffar animprovedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques
AT mohamedchtourou animprovedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques
AT doniabenhalimaabid improvedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques
AT saifeddineabouda improvedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques
AT hananemedhaffar improvedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques
AT mohamedchtourou improvedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques
_version_ 1721186097688477696