An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques
This paper proposes an innovative identification approach of nonlinear stochastic systems using Hammerstein–Wiener (HW) model with output-error autoregressive (OEA) noise. Two fuzzy systems are suggested for the identification of the input and output nonlinear blocks of a proposed model from given i...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2021-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2021/8525090 |
id |
doaj-664f0814a86a48a1a7b9537d8efe7e79 |
---|---|
record_format |
Article |
spelling |
doaj-664f0814a86a48a1a7b9537d8efe7e792021-08-30T00:01:14ZengHindawi-WileyComplexity1099-05262021-01-01202110.1155/2021/8525090An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering TechniquesDonia Ben Halima Abid0Saif Eddine Abouda1Hanane Medhaffar2Mohamed Chtourou3University of SfaxUniversity of SfaxUniversity of SfaxUniversity of SfaxThis paper proposes an innovative identification approach of nonlinear stochastic systems using Hammerstein–Wiener (HW) model with output-error autoregressive (OEA) noise. Two fuzzy systems are suggested for the identification of the input and output nonlinear blocks of a proposed model from given input-output data measurements. In this work, the need for the commonly used assumptions including well-known structure of input and/or output nonlinearities and/or reversible nonlinear output is eliminated by replacing the intermediate variables and noise with their estimates. Four parametric estimation algorithms to identify the proposed fuzzy-type stochastic output-error autoregressive HW (FSOEAHW) model are derived based on backpropagation algorithm and multi-innovation and data filtering identification techniques. The proposed algorithms are improved backpropagation gradient (IBPG) algorithm, multi-innovation IBPG (MIIBPG) algorithm, a data filtering IBPG (FIBPG) algorithm, and a multi-innovation-based FIBPG (MIFIBPG) algorithm. The convergence of the parameter estimation algorithms is studied. The effectiveness of the proposed algorithms is shown by a given simulation example.http://dx.doi.org/10.1155/2021/8525090 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Donia Ben Halima Abid Saif Eddine Abouda Hanane Medhaffar Mohamed Chtourou |
spellingShingle |
Donia Ben Halima Abid Saif Eddine Abouda Hanane Medhaffar Mohamed Chtourou An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques Complexity |
author_facet |
Donia Ben Halima Abid Saif Eddine Abouda Hanane Medhaffar Mohamed Chtourou |
author_sort |
Donia Ben Halima Abid |
title |
An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques |
title_short |
An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques |
title_full |
An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques |
title_fullStr |
An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques |
title_full_unstemmed |
An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques |
title_sort |
improved method for stochastic nonlinear system’s identification using fuzzy-type output-error autoregressive hammerstein–wiener model based on gradient algorithm, multi-innovation, and data filtering techniques |
publisher |
Hindawi-Wiley |
series |
Complexity |
issn |
1099-0526 |
publishDate |
2021-01-01 |
description |
This paper proposes an innovative identification approach of nonlinear stochastic systems using Hammerstein–Wiener (HW) model with output-error autoregressive (OEA) noise. Two fuzzy systems are suggested for the identification of the input and output nonlinear blocks of a proposed model from given input-output data measurements. In this work, the need for the commonly used assumptions including well-known structure of input and/or output nonlinearities and/or reversible nonlinear output is eliminated by replacing the intermediate variables and noise with their estimates. Four parametric estimation algorithms to identify the proposed fuzzy-type stochastic output-error autoregressive HW (FSOEAHW) model are derived based on backpropagation algorithm and multi-innovation and data filtering identification techniques. The proposed algorithms are improved backpropagation gradient (IBPG) algorithm, multi-innovation IBPG (MIIBPG) algorithm, a data filtering IBPG (FIBPG) algorithm, and a multi-innovation-based FIBPG (MIFIBPG) algorithm. The convergence of the parameter estimation algorithms is studied. The effectiveness of the proposed algorithms is shown by a given simulation example. |
url |
http://dx.doi.org/10.1155/2021/8525090 |
work_keys_str_mv |
AT doniabenhalimaabid animprovedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques AT saifeddineabouda animprovedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques AT hananemedhaffar animprovedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques AT mohamedchtourou animprovedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques AT doniabenhalimaabid improvedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques AT saifeddineabouda improvedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques AT hananemedhaffar improvedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques AT mohamedchtourou improvedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques |
_version_ |
1721186097688477696 |