VolcanoFinder: Genomic scans for adaptive introgression.
Recent research shows that introgression between closely-related species is an important source of adaptive alleles for a wide range of taxa. Typically, detection of adaptive introgression from genomic data relies on comparative analyses that require sequence data from both the recipient and the don...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2020-06-01
|
Series: | PLoS Genetics |
Online Access: | https://doi.org/10.1371/journal.pgen.1008867 |
id |
doaj-663f3aabcdd74ac1aaf10a157b710101 |
---|---|
record_format |
Article |
spelling |
doaj-663f3aabcdd74ac1aaf10a157b7101012021-05-30T04:31:57ZengPublic Library of Science (PLoS)PLoS Genetics1553-73901553-74042020-06-01166e100886710.1371/journal.pgen.1008867VolcanoFinder: Genomic scans for adaptive introgression.Derek SetterSylvain MoussetXiaoheng ChengRasmus NielsenMichael DeGiorgioJoachim HermissonRecent research shows that introgression between closely-related species is an important source of adaptive alleles for a wide range of taxa. Typically, detection of adaptive introgression from genomic data relies on comparative analyses that require sequence data from both the recipient and the donor species. However, in many cases, the donor is unknown or the data is not currently available. Here, we introduce a genome-scan method-VolcanoFinder-to detect recent events of adaptive introgression using polymorphism data from the recipient species only. VolcanoFinder detects adaptive introgression sweeps from the pattern of excess intermediate-frequency polymorphism they produce in the flanking region of the genome, a pattern which appears as a volcano-shape in pairwise genetic diversity. Using coalescent theory, we derive analytical predictions for these patterns. Based on these results, we develop a composite-likelihood test to detect signatures of adaptive introgression relative to the genomic background. Simulation results show that VolcanoFinder has high statistical power to detect these signatures, even for older sweeps and for soft sweeps initiated by multiple migrant haplotypes. Finally, we implement VolcanoFinder to detect archaic introgression in European and sub-Saharan African human populations, and uncovered interesting candidates in both populations, such as TSHR in Europeans and TCHH-RPTN in Africans. We discuss their biological implications and provide guidelines for identifying and circumventing artifactual signals during empirical applications of VolcanoFinder.https://doi.org/10.1371/journal.pgen.1008867 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Derek Setter Sylvain Mousset Xiaoheng Cheng Rasmus Nielsen Michael DeGiorgio Joachim Hermisson |
spellingShingle |
Derek Setter Sylvain Mousset Xiaoheng Cheng Rasmus Nielsen Michael DeGiorgio Joachim Hermisson VolcanoFinder: Genomic scans for adaptive introgression. PLoS Genetics |
author_facet |
Derek Setter Sylvain Mousset Xiaoheng Cheng Rasmus Nielsen Michael DeGiorgio Joachim Hermisson |
author_sort |
Derek Setter |
title |
VolcanoFinder: Genomic scans for adaptive introgression. |
title_short |
VolcanoFinder: Genomic scans for adaptive introgression. |
title_full |
VolcanoFinder: Genomic scans for adaptive introgression. |
title_fullStr |
VolcanoFinder: Genomic scans for adaptive introgression. |
title_full_unstemmed |
VolcanoFinder: Genomic scans for adaptive introgression. |
title_sort |
volcanofinder: genomic scans for adaptive introgression. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS Genetics |
issn |
1553-7390 1553-7404 |
publishDate |
2020-06-01 |
description |
Recent research shows that introgression between closely-related species is an important source of adaptive alleles for a wide range of taxa. Typically, detection of adaptive introgression from genomic data relies on comparative analyses that require sequence data from both the recipient and the donor species. However, in many cases, the donor is unknown or the data is not currently available. Here, we introduce a genome-scan method-VolcanoFinder-to detect recent events of adaptive introgression using polymorphism data from the recipient species only. VolcanoFinder detects adaptive introgression sweeps from the pattern of excess intermediate-frequency polymorphism they produce in the flanking region of the genome, a pattern which appears as a volcano-shape in pairwise genetic diversity. Using coalescent theory, we derive analytical predictions for these patterns. Based on these results, we develop a composite-likelihood test to detect signatures of adaptive introgression relative to the genomic background. Simulation results show that VolcanoFinder has high statistical power to detect these signatures, even for older sweeps and for soft sweeps initiated by multiple migrant haplotypes. Finally, we implement VolcanoFinder to detect archaic introgression in European and sub-Saharan African human populations, and uncovered interesting candidates in both populations, such as TSHR in Europeans and TCHH-RPTN in Africans. We discuss their biological implications and provide guidelines for identifying and circumventing artifactual signals during empirical applications of VolcanoFinder. |
url |
https://doi.org/10.1371/journal.pgen.1008867 |
work_keys_str_mv |
AT dereksetter volcanofindergenomicscansforadaptiveintrogression AT sylvainmousset volcanofindergenomicscansforadaptiveintrogression AT xiaohengcheng volcanofindergenomicscansforadaptiveintrogression AT rasmusnielsen volcanofindergenomicscansforadaptiveintrogression AT michaeldegiorgio volcanofindergenomicscansforadaptiveintrogression AT joachimhermisson volcanofindergenomicscansforadaptiveintrogression |
_version_ |
1721421078904963072 |