Cellular Harmony Search for Optimization Problems

Structured population in evolutionary algorithms (EAs) is an important research track where an individual only interacts with its neighboring individuals in the breeding step. The main rationale behind this is to provide a high level of diversity to overcome the genetic drift. Cellular automata conc...

Full description

Bibliographic Details
Main Authors: Mohammed Azmi Al-Betar, Ahamad Tajudin Khader, Mohammed A. Awadallah, Mahmmoud Hafsaldin Alawan, Belal Zaqaibeh
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2013/139464
Description
Summary:Structured population in evolutionary algorithms (EAs) is an important research track where an individual only interacts with its neighboring individuals in the breeding step. The main rationale behind this is to provide a high level of diversity to overcome the genetic drift. Cellular automata concepts have been embedded to the process of EA in order to provide a decentralized method in order to preserve the population structure. Harmony search (HS) is a recent EA that considers the whole individuals in the breeding step. In this paper, the cellular automata concepts are embedded into the HS algorithm to come up with a new version called cellular harmony search (cHS). In cHS, the population is arranged as a two-dimensional toroidal grid, where each individual in the grid is a cell and only interacts with its neighbors. The memory consideration and population update are modified according to cellular EA theory. The experimental results using benchmark functions show that embedding the cellular automata concepts with HS processes directly affects the performance. Finally, a parameter sensitivity analysis of the cHS variation is analyzed and a comparative evaluation shows the success of cHS.
ISSN:1110-757X
1687-0042