Estimating global surface ammonia concentrations inferred from satellite retrievals
<p>Ammonia (<span class="inline-formula">NH<sub>3</sub></span>), as an alkaline gas in the atmosphere, can cause direct or indirect effects on the air quality, soil acidification, climate change and human health. Estimating surface <span class="inline-...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-09-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/19/12051/2019/acp-19-12051-2019.pdf |
id |
doaj-6601b0c3b63a4412b6112dcc8d5f3ac0 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
L. Liu L. Liu L. Liu X. Zhang A. Y. H. Wong W. Xu X. Liu Y. Li H. Mi H. Mi X. Lu L. Zhao Z. Wang X. Wu X. Wu J. Wei |
spellingShingle |
L. Liu L. Liu L. Liu X. Zhang A. Y. H. Wong W. Xu X. Liu Y. Li H. Mi H. Mi X. Lu L. Zhao Z. Wang X. Wu X. Wu J. Wei Estimating global surface ammonia concentrations inferred from satellite retrievals Atmospheric Chemistry and Physics |
author_facet |
L. Liu L. Liu L. Liu X. Zhang A. Y. H. Wong W. Xu X. Liu Y. Li H. Mi H. Mi X. Lu L. Zhao Z. Wang X. Wu X. Wu J. Wei |
author_sort |
L. Liu |
title |
Estimating global surface ammonia concentrations inferred from satellite retrievals |
title_short |
Estimating global surface ammonia concentrations inferred from satellite retrievals |
title_full |
Estimating global surface ammonia concentrations inferred from satellite retrievals |
title_fullStr |
Estimating global surface ammonia concentrations inferred from satellite retrievals |
title_full_unstemmed |
Estimating global surface ammonia concentrations inferred from satellite retrievals |
title_sort |
estimating global surface ammonia concentrations inferred from satellite retrievals |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2019-09-01 |
description |
<p>Ammonia (<span class="inline-formula">NH<sub>3</sub></span>), as an alkaline gas in the atmosphere, can cause direct
or indirect effects on the air quality, soil acidification, climate change
and human health. Estimating surface <span class="inline-formula">NH<sub>3</sub></span> concentrations is
critically important for modeling the dry deposition of <span class="inline-formula">NH<sub>3</sub></span> and for
modeling the formation of ammonium nitrate, which have important impacts on
the natural environment. However, sparse monitoring sites make it
challenging and difficult to understand the global distribution of surface
<span class="inline-formula">NH<sub>3</sub></span> concentrations in both time and space. We estimated the global
surface <span class="inline-formula">NH<sub>3</sub></span> concentrations for the years of 2008–2016 using
satellite <span class="inline-formula">NH<sub>3</sub></span> retrievals combining vertical profiles from
GEOS-Chem. The accuracy assessment indicates that the satellite-based
approach has achieved a high predictive power for annual surface <span class="inline-formula">NH<sub>3</sub></span>
concentrations compared with the measurements of all sites in China, the US and
Europe (<span class="inline-formula"><i>R</i><sup>2</sup>=0.76</span> and RMSE <span class="inline-formula">=</span> 1.50 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span>). The
satellite-derived surface <span class="inline-formula">NH<sub>3</sub></span> concentrations had higher consistency
with the ground-based measurements in China (<span class="inline-formula"><i>R</i><sup>2</sup>=0.71</span> and RMSE <span class="inline-formula">=</span> 2.6 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span>) than the US (<span class="inline-formula"><i>R</i><sup>2</sup>=0.45</span> and RMSE <span class="inline-formula">=</span> 0.76 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span>) and Europe (<span class="inline-formula"><i>R</i><sup>2</sup>=0.45</span> and RMSE <span class="inline-formula">=</span> 0.86 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span>) at
a yearly scale. Annual surface <span class="inline-formula">NH<sub>3</sub></span> concentrations higher than 6 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span> are mainly concentrated in the North China Plain of China and
northern India, followed by 2–6 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span> mainly in southern and
northeastern China, India, western Europe, and the eastern United States (US).
High surface <span class="inline-formula">NH<sub>3</sub></span> concentrations were found in the croplands in China, the
US and Europe, and surface <span class="inline-formula">NH<sub>3</sub></span> concentrations in the croplands in China
were approximately double those in the croplands in the US and Europe.
The linear trend analysis shows that an increase rate of surface <span class="inline-formula">NH<sub>3</sub></span>
concentrations (> 0.2 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span> yr<span class="inline-formula"><sup>−1</sup></span>) appeared in eastern China during 2008–2016, and a middle increase rate (0.1–0.2 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span> yr<span class="inline-formula"><sup>−1</sup></span>) occurred in northern Xinjiang over China. <span class="inline-formula">NH<sub>3</sub></span>
increase was also found in agricultural regions in the central and eastern US
with an annual increase rate of lower than 0.10 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span> yr<span class="inline-formula"><sup>−1</sup></span>.
The satellite-derived surface <span class="inline-formula">NH<sub>3</sub></span> concentrations help us to determine
the <span class="inline-formula">NH<sub>3</sub></span> pollution status in the areas without monitoring sites and to
estimate the dry deposition of <span class="inline-formula">NH<sub>3</sub></span> in the future.</p> |
url |
https://www.atmos-chem-phys.net/19/12051/2019/acp-19-12051-2019.pdf |
work_keys_str_mv |
AT lliu estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals AT lliu estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals AT lliu estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals AT xzhang estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals AT ayhwong estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals AT wxu estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals AT xliu estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals AT yli estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals AT hmi estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals AT hmi estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals AT xlu estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals AT lzhao estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals AT zwang estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals AT xwu estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals AT xwu estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals AT jwei estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals |
_version_ |
1724916518588776448 |
spelling |
doaj-6601b0c3b63a4412b6112dcc8d5f3ac02020-11-25T02:11:04ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-09-0119120511206610.5194/acp-19-12051-2019Estimating global surface ammonia concentrations inferred from satellite retrievalsL. Liu0L. Liu1L. Liu2X. Zhang3A. Y. H. Wong4W. Xu5X. Liu6Y. Li7H. Mi8H. Mi9X. Lu10L. Zhao11Z. Wang12X. Wu13X. Wu14J. Wei15College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, ChinaInternational Institute for Earth System Science, Nanjing University, Nanjing, 210023, ChinaDepartment of Earth and Environment, Boston University, Boston, Massachusetts, USAInternational Institute for Earth System Science, Nanjing University, Nanjing, 210023, ChinaDepartment of Earth and Environment, Boston University, Boston, Massachusetts, USACollege of Resources and Environmental Sciences, Centre for Resources, Environment and Food Security, Key Lab of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, ChinaCollege of Resources and Environmental Sciences, Centre for Resources, Environment and Food Security, Key Lab of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, ChinaChief Technology Officer SailBri Cooper Inc., Beaverton, Oregon, 97008, USADepartment of Earth and Environment, Boston University, Boston, Massachusetts, USACollege of Surveying and Geo-Informatics, Tongji University, 1239 Siping Road, Shanghai, ChinaInternational Institute for Earth System Science, Nanjing University, Nanjing, 210023, ChinaInternational Institute for Earth System Science, Nanjing University, Nanjing, 210023, ChinaInternational Institute for Earth System Science, Nanjing University, Nanjing, 210023, ChinaInternational Institute for Earth System Science, Nanjing University, Nanjing, 210023, ChinaJiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, ChinaState Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China<p>Ammonia (<span class="inline-formula">NH<sub>3</sub></span>), as an alkaline gas in the atmosphere, can cause direct or indirect effects on the air quality, soil acidification, climate change and human health. Estimating surface <span class="inline-formula">NH<sub>3</sub></span> concentrations is critically important for modeling the dry deposition of <span class="inline-formula">NH<sub>3</sub></span> and for modeling the formation of ammonium nitrate, which have important impacts on the natural environment. However, sparse monitoring sites make it challenging and difficult to understand the global distribution of surface <span class="inline-formula">NH<sub>3</sub></span> concentrations in both time and space. We estimated the global surface <span class="inline-formula">NH<sub>3</sub></span> concentrations for the years of 2008–2016 using satellite <span class="inline-formula">NH<sub>3</sub></span> retrievals combining vertical profiles from GEOS-Chem. The accuracy assessment indicates that the satellite-based approach has achieved a high predictive power for annual surface <span class="inline-formula">NH<sub>3</sub></span> concentrations compared with the measurements of all sites in China, the US and Europe (<span class="inline-formula"><i>R</i><sup>2</sup>=0.76</span> and RMSE <span class="inline-formula">=</span> 1.50 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span>). The satellite-derived surface <span class="inline-formula">NH<sub>3</sub></span> concentrations had higher consistency with the ground-based measurements in China (<span class="inline-formula"><i>R</i><sup>2</sup>=0.71</span> and RMSE <span class="inline-formula">=</span> 2.6 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span>) than the US (<span class="inline-formula"><i>R</i><sup>2</sup>=0.45</span> and RMSE <span class="inline-formula">=</span> 0.76 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span>) and Europe (<span class="inline-formula"><i>R</i><sup>2</sup>=0.45</span> and RMSE <span class="inline-formula">=</span> 0.86 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span>) at a yearly scale. Annual surface <span class="inline-formula">NH<sub>3</sub></span> concentrations higher than 6 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span> are mainly concentrated in the North China Plain of China and northern India, followed by 2–6 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span> mainly in southern and northeastern China, India, western Europe, and the eastern United States (US). High surface <span class="inline-formula">NH<sub>3</sub></span> concentrations were found in the croplands in China, the US and Europe, and surface <span class="inline-formula">NH<sub>3</sub></span> concentrations in the croplands in China were approximately double those in the croplands in the US and Europe. The linear trend analysis shows that an increase rate of surface <span class="inline-formula">NH<sub>3</sub></span> concentrations (> 0.2 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span> yr<span class="inline-formula"><sup>−1</sup></span>) appeared in eastern China during 2008–2016, and a middle increase rate (0.1–0.2 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span> yr<span class="inline-formula"><sup>−1</sup></span>) occurred in northern Xinjiang over China. <span class="inline-formula">NH<sub>3</sub></span> increase was also found in agricultural regions in the central and eastern US with an annual increase rate of lower than 0.10 <span class="inline-formula">µ</span>g N m<span class="inline-formula"><sup>−3</sup></span> yr<span class="inline-formula"><sup>−1</sup></span>. The satellite-derived surface <span class="inline-formula">NH<sub>3</sub></span> concentrations help us to determine the <span class="inline-formula">NH<sub>3</sub></span> pollution status in the areas without monitoring sites and to estimate the dry deposition of <span class="inline-formula">NH<sub>3</sub></span> in the future.</p>https://www.atmos-chem-phys.net/19/12051/2019/acp-19-12051-2019.pdf |