Estimating global surface ammonia concentrations inferred from satellite retrievals

<p>Ammonia (<span class="inline-formula">NH<sub>3</sub></span>), as an alkaline gas in the atmosphere, can cause direct or indirect effects on the air quality, soil acidification, climate change and human health. Estimating surface <span class="inline-...

Full description

Bibliographic Details
Main Authors: L. Liu, X. Zhang, A. Y. H. Wong, W. Xu, X. Liu, Y. Li, H. Mi, X. Lu, L. Zhao, Z. Wang, X. Wu, J. Wei
Format: Article
Language:English
Published: Copernicus Publications 2019-09-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/12051/2019/acp-19-12051-2019.pdf
id doaj-6601b0c3b63a4412b6112dcc8d5f3ac0
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author L. Liu
L. Liu
L. Liu
X. Zhang
A. Y. H. Wong
W. Xu
X. Liu
Y. Li
H. Mi
H. Mi
X. Lu
L. Zhao
Z. Wang
X. Wu
X. Wu
J. Wei
spellingShingle L. Liu
L. Liu
L. Liu
X. Zhang
A. Y. H. Wong
W. Xu
X. Liu
Y. Li
H. Mi
H. Mi
X. Lu
L. Zhao
Z. Wang
X. Wu
X. Wu
J. Wei
Estimating global surface ammonia concentrations inferred from satellite retrievals
Atmospheric Chemistry and Physics
author_facet L. Liu
L. Liu
L. Liu
X. Zhang
A. Y. H. Wong
W. Xu
X. Liu
Y. Li
H. Mi
H. Mi
X. Lu
L. Zhao
Z. Wang
X. Wu
X. Wu
J. Wei
author_sort L. Liu
title Estimating global surface ammonia concentrations inferred from satellite retrievals
title_short Estimating global surface ammonia concentrations inferred from satellite retrievals
title_full Estimating global surface ammonia concentrations inferred from satellite retrievals
title_fullStr Estimating global surface ammonia concentrations inferred from satellite retrievals
title_full_unstemmed Estimating global surface ammonia concentrations inferred from satellite retrievals
title_sort estimating global surface ammonia concentrations inferred from satellite retrievals
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2019-09-01
description <p>Ammonia (<span class="inline-formula">NH<sub>3</sub></span>), as an alkaline gas in the atmosphere, can cause direct or indirect effects on the air quality, soil acidification, climate change and human health. Estimating surface <span class="inline-formula">NH<sub>3</sub></span> concentrations is critically important for modeling the dry deposition of <span class="inline-formula">NH<sub>3</sub></span> and for modeling the formation of ammonium nitrate, which have important impacts on the natural environment. However, sparse monitoring sites make it challenging and difficult to understand the global distribution of surface <span class="inline-formula">NH<sub>3</sub></span> concentrations in both time and space. We estimated the global surface <span class="inline-formula">NH<sub>3</sub></span> concentrations for the years of 2008–2016 using satellite <span class="inline-formula">NH<sub>3</sub></span> retrievals combining vertical profiles from GEOS-Chem. The accuracy assessment indicates that the satellite-based approach has achieved a high predictive power for annual surface <span class="inline-formula">NH<sub>3</sub></span> concentrations compared with the measurements of all sites in China, the US and Europe (<span class="inline-formula"><i>R</i><sup>2</sup>=0.76</span> and RMSE&thinsp;<span class="inline-formula">=</span>&thinsp;1.50&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span>). The satellite-derived surface <span class="inline-formula">NH<sub>3</sub></span> concentrations had higher consistency with the ground-based measurements in China (<span class="inline-formula"><i>R</i><sup>2</sup>=0.71</span> and RMSE&thinsp;<span class="inline-formula">=</span>&thinsp;2.6&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span>) than the US (<span class="inline-formula"><i>R</i><sup>2</sup>=0.45</span> and RMSE&thinsp;<span class="inline-formula">=</span>&thinsp;0.76&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span>) and Europe (<span class="inline-formula"><i>R</i><sup>2</sup>=0.45</span> and RMSE&thinsp;<span class="inline-formula">=</span>&thinsp;0.86&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span>) at a yearly scale. Annual surface <span class="inline-formula">NH<sub>3</sub></span> concentrations higher than 6&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span> are mainly concentrated in the North China Plain of China and northern India, followed by 2–6&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span> mainly in southern and northeastern China, India, western Europe, and the eastern United States (US). High surface <span class="inline-formula">NH<sub>3</sub></span> concentrations were found in the croplands in China, the US and Europe, and surface <span class="inline-formula">NH<sub>3</sub></span> concentrations in the croplands in China were approximately double those in the croplands in the US and Europe. The linear trend analysis shows that an increase rate of surface <span class="inline-formula">NH<sub>3</sub></span> concentrations (&gt;&thinsp;0.2&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span>&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>) appeared in eastern China during 2008–2016, and a middle increase rate (0.1–0.2&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span>&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>) occurred in northern Xinjiang over China. <span class="inline-formula">NH<sub>3</sub></span> increase was also found in agricultural regions in the central and eastern US with an annual increase rate of lower than 0.10&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span>&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>. The satellite-derived surface <span class="inline-formula">NH<sub>3</sub></span> concentrations help us to determine the <span class="inline-formula">NH<sub>3</sub></span> pollution status in the areas without monitoring sites and to estimate the dry deposition of <span class="inline-formula">NH<sub>3</sub></span> in the future.</p>
url https://www.atmos-chem-phys.net/19/12051/2019/acp-19-12051-2019.pdf
work_keys_str_mv AT lliu estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals
AT lliu estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals
AT lliu estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals
AT xzhang estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals
AT ayhwong estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals
AT wxu estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals
AT xliu estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals
AT yli estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals
AT hmi estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals
AT hmi estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals
AT xlu estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals
AT lzhao estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals
AT zwang estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals
AT xwu estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals
AT xwu estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals
AT jwei estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals
_version_ 1724916518588776448
spelling doaj-6601b0c3b63a4412b6112dcc8d5f3ac02020-11-25T02:11:04ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-09-0119120511206610.5194/acp-19-12051-2019Estimating global surface ammonia concentrations inferred from satellite retrievalsL. Liu0L. Liu1L. Liu2X. Zhang3A. Y. H. Wong4W. Xu5X. Liu6Y. Li7H. Mi8H. Mi9X. Lu10L. Zhao11Z. Wang12X. Wu13X. Wu14J. Wei15College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, ChinaInternational Institute for Earth System Science, Nanjing University, Nanjing, 210023, ChinaDepartment of Earth and Environment, Boston University, Boston, Massachusetts, USAInternational Institute for Earth System Science, Nanjing University, Nanjing, 210023, ChinaDepartment of Earth and Environment, Boston University, Boston, Massachusetts, USACollege of Resources and Environmental Sciences, Centre for Resources, Environment and Food Security, Key Lab of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, ChinaCollege of Resources and Environmental Sciences, Centre for Resources, Environment and Food Security, Key Lab of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, ChinaChief Technology Officer SailBri Cooper Inc., Beaverton, Oregon, 97008, USADepartment of Earth and Environment, Boston University, Boston, Massachusetts, USACollege of Surveying and Geo-Informatics, Tongji University, 1239 Siping Road, Shanghai, ChinaInternational Institute for Earth System Science, Nanjing University, Nanjing, 210023, ChinaInternational Institute for Earth System Science, Nanjing University, Nanjing, 210023, ChinaInternational Institute for Earth System Science, Nanjing University, Nanjing, 210023, ChinaInternational Institute for Earth System Science, Nanjing University, Nanjing, 210023, ChinaJiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, ChinaState Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China<p>Ammonia (<span class="inline-formula">NH<sub>3</sub></span>), as an alkaline gas in the atmosphere, can cause direct or indirect effects on the air quality, soil acidification, climate change and human health. Estimating surface <span class="inline-formula">NH<sub>3</sub></span> concentrations is critically important for modeling the dry deposition of <span class="inline-formula">NH<sub>3</sub></span> and for modeling the formation of ammonium nitrate, which have important impacts on the natural environment. However, sparse monitoring sites make it challenging and difficult to understand the global distribution of surface <span class="inline-formula">NH<sub>3</sub></span> concentrations in both time and space. We estimated the global surface <span class="inline-formula">NH<sub>3</sub></span> concentrations for the years of 2008–2016 using satellite <span class="inline-formula">NH<sub>3</sub></span> retrievals combining vertical profiles from GEOS-Chem. The accuracy assessment indicates that the satellite-based approach has achieved a high predictive power for annual surface <span class="inline-formula">NH<sub>3</sub></span> concentrations compared with the measurements of all sites in China, the US and Europe (<span class="inline-formula"><i>R</i><sup>2</sup>=0.76</span> and RMSE&thinsp;<span class="inline-formula">=</span>&thinsp;1.50&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span>). The satellite-derived surface <span class="inline-formula">NH<sub>3</sub></span> concentrations had higher consistency with the ground-based measurements in China (<span class="inline-formula"><i>R</i><sup>2</sup>=0.71</span> and RMSE&thinsp;<span class="inline-formula">=</span>&thinsp;2.6&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span>) than the US (<span class="inline-formula"><i>R</i><sup>2</sup>=0.45</span> and RMSE&thinsp;<span class="inline-formula">=</span>&thinsp;0.76&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span>) and Europe (<span class="inline-formula"><i>R</i><sup>2</sup>=0.45</span> and RMSE&thinsp;<span class="inline-formula">=</span>&thinsp;0.86&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span>) at a yearly scale. Annual surface <span class="inline-formula">NH<sub>3</sub></span> concentrations higher than 6&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span> are mainly concentrated in the North China Plain of China and northern India, followed by 2–6&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span> mainly in southern and northeastern China, India, western Europe, and the eastern United States (US). High surface <span class="inline-formula">NH<sub>3</sub></span> concentrations were found in the croplands in China, the US and Europe, and surface <span class="inline-formula">NH<sub>3</sub></span> concentrations in the croplands in China were approximately double those in the croplands in the US and Europe. The linear trend analysis shows that an increase rate of surface <span class="inline-formula">NH<sub>3</sub></span> concentrations (&gt;&thinsp;0.2&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span>&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>) appeared in eastern China during 2008–2016, and a middle increase rate (0.1–0.2&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span>&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>) occurred in northern Xinjiang over China. <span class="inline-formula">NH<sub>3</sub></span> increase was also found in agricultural regions in the central and eastern US with an annual increase rate of lower than 0.10&thinsp;<span class="inline-formula">µ</span>g&thinsp;N&thinsp;m<span class="inline-formula"><sup>−3</sup></span>&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>. The satellite-derived surface <span class="inline-formula">NH<sub>3</sub></span> concentrations help us to determine the <span class="inline-formula">NH<sub>3</sub></span> pollution status in the areas without monitoring sites and to estimate the dry deposition of <span class="inline-formula">NH<sub>3</sub></span> in the future.</p>https://www.atmos-chem-phys.net/19/12051/2019/acp-19-12051-2019.pdf