Raman Hyperspectral Imaging for Detection of Watermelon Seeds Infected with Acidovorax citrulli

The bacterial infection of seeds is one of the most important quality factors affecting yield. Conventional detection methods for bacteria-infected seeds, such as biological, serological, and molecular tests, are not feasible since they require expensive equipment, and furthermore, the testing proce...

Full description

Bibliographic Details
Main Authors: Hoonsoo Lee, Moon S. Kim, Jianwei Qin, Eunsoo Park, Yu-Rim Song, Chang-Sik Oh, Byoung-Kwan Cho
Format: Article
Language:English
Published: MDPI AG 2017-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/17/10/2188
Description
Summary:The bacterial infection of seeds is one of the most important quality factors affecting yield. Conventional detection methods for bacteria-infected seeds, such as biological, serological, and molecular tests, are not feasible since they require expensive equipment, and furthermore, the testing processes are also time-consuming. In this study, we use the Raman hyperspectral imaging technique to distinguish bacteria-infected seeds from healthy seeds as a rapid, accurate, and non-destructive detection tool. We utilize Raman hyperspectral imaging data in the spectral range of 400–1800 cm−1 to determine the optimal band-ratio for the discrimination of watermelon seeds infected by the bacteria Acidovorax citrulli using ANOVA. Two bands at 1076.8 cm−1 and 437 cm−1 are selected as the optimal Raman peaks for the detection of bacteria-infected seeds. The results demonstrate that the Raman hyperspectral imaging technique has a good potential for the detection of bacteria-infected watermelon seeds and that it could form a suitable alternative to conventional methods.
ISSN:1424-8220