Bourgin-Yang-type theorem for <mml:math> <mml:mi>a</mml:mi> </mml:math>-compact perturbations of closed operators. Part I. The case of index theories with dimension property
<p>A variant of the Bourgin-Yang theorem for <mml:math> <mml:mi>a</mml:mi> </mml:math>-compact perturbations of a closed linear operator (in general, unbounded and having an infinite-dimensional kernel) is proved. An application to integrodifferential equations is dis...
Format: | Article |
---|---|
Language: | English |
Published: |
Hindawi Limited
2006-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/78928 |
Similar Items
-
Point availability of a renewable <mml:math> <mml:mi mathvariant="bold">T</mml:mi> </mml:math>-system
Published: (2006-01-01) -
Second-order <mml:math> <mml:mi>n</mml:mi> </mml:math>-point eigenvalue problems on time scales
Published: (2006-01-01) -
Theorem on the union of two topologically flat cells of codimension 1 in <mml:math> <mml:mrow> <mml:msup> <mml:mi>ℝ</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:math>
Published: (2006-01-01) -
Existence results for classes of <mml:math alttext="$p$"> <mml:mi>p</mml:mi> </mml:math>-Laplacian semipositone equations
Published: (2006-01-01) -
An <mml:math alttext="$H$"> <mml:mi>H</mml:mi> </mml:math>-system for a revolution surface without boundary
Published: (2006-01-01)