Summary: | Abstract Short-term adverse health effects of constituents of fine particles with aerodynamic diameters less than or equal to 2.5 μm (PM2.5) have been revealed. This study aimed to evaluate the real-time health outcome of ambulance services in association with ambient temperature and mass concentrations of total PM2.5 level and constituents in Kaohsiung City, an industrialized city with the worst air quality in Taiwan. Cumulative 6-day (lag0-5) relative risk (RR) and 95% confidence interval (CI) of daily ambulance services records of respiratory distress, coma and unconsciousness, chest pain, headaches/dizziness/vertigo/fainting/syncope, lying at public, and out-of-hospital cardiac arrest (OHCA) in association with ambient temperature and mass concentrations of total PM2.5 level and constituents (nitrate, sulfate, organic carbon (OC), and elemental carbon (EC)) from 2006 to 2010 were evaluated using a distributed lag non-linear model with quasi-Poisson function. Ambulance services of chest pain and OHCA were significantly associated with extreme high (30.8 °C) and low (18.2 °C) temperatures, with cumulative 6-day RRs ranging from 1.37 to 1.67 at the reference temperature of 24–25 °C. Daily total PM2.5 level had significant effects on ambulance services of lying at public and respiratory distress. After adjusting the cumulative 6-day effects of temperature and total PM2.5 level, RRs of ambulance services of lying at public associated with constituents at 90th percentile versus 25th percentile were 1.35 (95% CI: 1.08, 1.68) for sulfate and 1.20 (95% CI: 1.02, 1.41) for EC, while RR was 1.31 (95% CI: 1.09–1.58) for ambulance services of headache/dizziness/vertigo/fainting/syncope in association with OC at 90th percentile versus 25th percentile. Cause-specific ambulance services had various significant association with daily temperature, total PM2.5 level, and concentrations of constituents. Elemental carbon may have stronger associations with increased ambulance services than other constituents.
|