Towards Revealing Parallel Adversarial Attack on Politician Socialnet of Graph Structure

Socialnet becomes an important component in real life, drawing a lot of study issues of security and safety. Recently, for the features of graph structure in socialnet, adversarial attacks on node classification are exposed, and automatic attack methods such as fast gradient attack (FGA) and NETTACK...

Full description

Bibliographic Details
Main Authors: Yunzhe Tian, Jiqiang Liu, Endong Tong, Wenjia Niu, Liang Chang, Qi Alfred Chen, Gang Li, Wei Wang
Format: Article
Language:English
Published: Hindawi-Wiley 2021-01-01
Series:Security and Communication Networks
Online Access:http://dx.doi.org/10.1155/2021/6631247
Description
Summary:Socialnet becomes an important component in real life, drawing a lot of study issues of security and safety. Recently, for the features of graph structure in socialnet, adversarial attacks on node classification are exposed, and automatic attack methods such as fast gradient attack (FGA) and NETTACK are developed for per-node attacks, which can be utilized for multinode attacks in a sequential way. However, due to the overlook of perturbation influence between different per-node attacks, the above sequential method does not guarantee a global attack success rate for all target nodes, under a fixed budget of perturbation. In this paper, we propose a parallel adversarial attack framework on node classification. We redesign new loss function and objective function for nonconstraint and constraint perturbations, respectively. Through constructing intersection and supplement mechanisms of perturbations, we then integrate node filtering-based P-FGA and P-NETTACK in a unified framework, finally realizing parallel adversarial attacks. Experiments on politician socialnet dataset Polblogs with detailed analysis are conducted to show the effectiveness of our approach.
ISSN:1939-0122