Effects of shrub and tree cover increase on the near-surface atmosphere in northern Fennoscandia

Increased shrub and tree cover in high latitudes is a widely observed response to climate change that can lead to positive feedbacks to the regional climate. In this study we evaluate the sensitivity of the near-surface atmosphere to a potential increase in shrub and tree cover in the northern F...

Full description

Bibliographic Details
Main Authors: J. H. Rydsaa, F. Stordal, A. Bryn, L. M. Tallaksen
Format: Article
Language:English
Published: Copernicus Publications 2017-09-01
Series:Biogeosciences
Online Access:https://www.biogeosciences.net/14/4209/2017/bg-14-4209-2017.pdf
id doaj-65c74ba94f4345d1bf708404c2a17587
record_format Article
spelling doaj-65c74ba94f4345d1bf708404c2a175872020-11-24T22:39:46ZengCopernicus PublicationsBiogeosciences1726-41701726-41892017-09-01144209422710.5194/bg-14-4209-2017Effects of shrub and tree cover increase on the near-surface atmosphere in northern FennoscandiaJ. H. Rydsaa0F. Stordal1A. Bryn2L. M. Tallaksen3Department of Geosciences, University of Oslo, Oslo, NorwayDepartment of Geosciences, University of Oslo, Oslo, NorwayNatural History Museum, University of Oslo, Oslo, NorwayDepartment of Geosciences, University of Oslo, Oslo, NorwayIncreased shrub and tree cover in high latitudes is a widely observed response to climate change that can lead to positive feedbacks to the regional climate. In this study we evaluate the sensitivity of the near-surface atmosphere to a potential increase in shrub and tree cover in the northern Fennoscandia region. We have applied the Weather Research and Forecasting (WRF) model with the Noah-UA land surface module in evaluating biophysical effects of increased shrub cover on the near-surface atmosphere at a fine resolution (5.4 km  ×  5.4 km). Perturbation experiments are performed in which we prescribe a gradual increase in taller vegetation in the alpine shrub and tree cover according to empirically established bioclimatic zones within the study region. We focus on the spring and summer atmospheric response. To evaluate the sensitivity of the atmospheric response to inter-annual variability in climate, simulations were conducted for two contrasting years, one warm and one cold. We find that shrub and tree cover increase leads to a general increase in near-surface temperatures, with the highest influence seen during the snowmelt season and a more moderate effect during summer. We find that the warming effect is stronger in taller vegetation types, with more complex canopies leading to decreases in the surface albedo. Counteracting effects include increased evapotranspiration, which can lead to increased cloud cover, precipitation, and snow cover. We find that the strength of the atmospheric feedback is sensitive to snow cover variations and to a lesser extent to summer temperatures. Our results show that the positive feedback to high-latitude warming induced by increased shrub and tree cover is a robust feature across inter-annual differences in meteorological conditions and will likely play an important role in land–atmosphere feedback processes in the future.https://www.biogeosciences.net/14/4209/2017/bg-14-4209-2017.pdf
collection DOAJ
language English
format Article
sources DOAJ
author J. H. Rydsaa
F. Stordal
A. Bryn
L. M. Tallaksen
spellingShingle J. H. Rydsaa
F. Stordal
A. Bryn
L. M. Tallaksen
Effects of shrub and tree cover increase on the near-surface atmosphere in northern Fennoscandia
Biogeosciences
author_facet J. H. Rydsaa
F. Stordal
A. Bryn
L. M. Tallaksen
author_sort J. H. Rydsaa
title Effects of shrub and tree cover increase on the near-surface atmosphere in northern Fennoscandia
title_short Effects of shrub and tree cover increase on the near-surface atmosphere in northern Fennoscandia
title_full Effects of shrub and tree cover increase on the near-surface atmosphere in northern Fennoscandia
title_fullStr Effects of shrub and tree cover increase on the near-surface atmosphere in northern Fennoscandia
title_full_unstemmed Effects of shrub and tree cover increase on the near-surface atmosphere in northern Fennoscandia
title_sort effects of shrub and tree cover increase on the near-surface atmosphere in northern fennoscandia
publisher Copernicus Publications
series Biogeosciences
issn 1726-4170
1726-4189
publishDate 2017-09-01
description Increased shrub and tree cover in high latitudes is a widely observed response to climate change that can lead to positive feedbacks to the regional climate. In this study we evaluate the sensitivity of the near-surface atmosphere to a potential increase in shrub and tree cover in the northern Fennoscandia region. We have applied the Weather Research and Forecasting (WRF) model with the Noah-UA land surface module in evaluating biophysical effects of increased shrub cover on the near-surface atmosphere at a fine resolution (5.4 km  ×  5.4 km). Perturbation experiments are performed in which we prescribe a gradual increase in taller vegetation in the alpine shrub and tree cover according to empirically established bioclimatic zones within the study region. We focus on the spring and summer atmospheric response. To evaluate the sensitivity of the atmospheric response to inter-annual variability in climate, simulations were conducted for two contrasting years, one warm and one cold. We find that shrub and tree cover increase leads to a general increase in near-surface temperatures, with the highest influence seen during the snowmelt season and a more moderate effect during summer. We find that the warming effect is stronger in taller vegetation types, with more complex canopies leading to decreases in the surface albedo. Counteracting effects include increased evapotranspiration, which can lead to increased cloud cover, precipitation, and snow cover. We find that the strength of the atmospheric feedback is sensitive to snow cover variations and to a lesser extent to summer temperatures. Our results show that the positive feedback to high-latitude warming induced by increased shrub and tree cover is a robust feature across inter-annual differences in meteorological conditions and will likely play an important role in land–atmosphere feedback processes in the future.
url https://www.biogeosciences.net/14/4209/2017/bg-14-4209-2017.pdf
work_keys_str_mv AT jhrydsaa effectsofshrubandtreecoverincreaseonthenearsurfaceatmosphereinnorthernfennoscandia
AT fstordal effectsofshrubandtreecoverincreaseonthenearsurfaceatmosphereinnorthernfennoscandia
AT abryn effectsofshrubandtreecoverincreaseonthenearsurfaceatmosphereinnorthernfennoscandia
AT lmtallaksen effectsofshrubandtreecoverincreaseonthenearsurfaceatmosphereinnorthernfennoscandia
_version_ 1725707739266547712