On operations on some classes of discontinuous maps

A map $f:X\rightarrow Y$ between topological spaces is called scatteredly continuous (pointwise discontinuous) if for each non-empty (closed) subspace $A\subset X$ the restriction $f|_{A}$ has a point of continuity. We define a map $f:X\to Y$ to be weakly discontinuous if for every non-empty subspac...

Full description

Bibliographic Details
Main Authors: B. M. Bokalo, N. M. Kolos
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2013-01-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Online Access:http://journals.pu.if.ua/index.php/cmp/article/view/92
Description
Summary:A map $f:X\rightarrow Y$ between topological spaces is called scatteredly continuous (pointwise discontinuous) if for each non-empty (closed) subspace $A\subset X$ the restriction $f|_{A}$ has a point of continuity. We define a map $f:X\to Y$ to be weakly discontinuous if for every non-empty subspace $A\subset X$ the set $D(f|_A)$ of discontinuity points of the restriction $f|_A$ is nowhere dense in $A$.<br />In this paper we consider the composition, Cartesian and diagonal product of weakly discontinuous, scatteredly continuous and pointwise discontinuous maps.<br />
ISSN:2075-9827
2313-0210