Three positive solutions for a system of singular generalized Lidstone problems
In this article, we show the existence of at least three positive solutions for the system of singular generalized Lidstone boundary value problems $displaylines{ (-1)^m x^{(2m)}=a(t)f_1(t,x,-x'',dots,(-1)^{m-1}x^{(2m-2)},y,-y'',cr dots,(-1)^{n-1}y^{(2n-2)}), cr (-1)^n y^{(...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2009-12-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2009/163/abstr.html |
id |
doaj-65a77e8634c2446685a697973af841e1 |
---|---|
record_format |
Article |
spelling |
doaj-65a77e8634c2446685a697973af841e12020-11-24T21:18:22ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912009-12-012009163,19Three positive solutions for a system of singular generalized Lidstone problemsJiafa XuZhilin YangIn this article, we show the existence of at least three positive solutions for the system of singular generalized Lidstone boundary value problems $displaylines{ (-1)^m x^{(2m)}=a(t)f_1(t,x,-x'',dots,(-1)^{m-1}x^{(2m-2)},y,-y'',cr dots,(-1)^{n-1}y^{(2n-2)}), cr (-1)^n y^{(2n)}=b(t)f_2(t,x,-x'',dots,(-1)^{m-1}x^{(2m-2)},y,-y'',cr dots,(-1)^{n-1}y^{(2n-2)}), cr a_1 x^{(2i)}(0)-b_1 x^{(2i+1)}(0)=c_1x^{(2i)}(1)+d_1 x^{(2i+1)}(1)=0,cr a_2y^{(2j)}(0)-b_2y^{(2j+1)}(0)=c_2y^{(2j)}(1)+d_2y^{(2j+1)}(1)=0. }$$ The proofs of our main results are based on the Leggett-Williams fixed point theorem. Also, we give an example to illustrate our results. http://ejde.math.txstate.edu/Volumes/2009/163/abstr.htmlSingular generalized Lidstone problempositive solutionconeconcave functional |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jiafa Xu Zhilin Yang |
spellingShingle |
Jiafa Xu Zhilin Yang Three positive solutions for a system of singular generalized Lidstone problems Electronic Journal of Differential Equations Singular generalized Lidstone problem positive solution cone concave functional |
author_facet |
Jiafa Xu Zhilin Yang |
author_sort |
Jiafa Xu |
title |
Three positive solutions for a system of singular generalized Lidstone problems |
title_short |
Three positive solutions for a system of singular generalized Lidstone problems |
title_full |
Three positive solutions for a system of singular generalized Lidstone problems |
title_fullStr |
Three positive solutions for a system of singular generalized Lidstone problems |
title_full_unstemmed |
Three positive solutions for a system of singular generalized Lidstone problems |
title_sort |
three positive solutions for a system of singular generalized lidstone problems |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2009-12-01 |
description |
In this article, we show the existence of at least three positive solutions for the system of singular generalized Lidstone boundary value problems $displaylines{ (-1)^m x^{(2m)}=a(t)f_1(t,x,-x'',dots,(-1)^{m-1}x^{(2m-2)},y,-y'',cr dots,(-1)^{n-1}y^{(2n-2)}), cr (-1)^n y^{(2n)}=b(t)f_2(t,x,-x'',dots,(-1)^{m-1}x^{(2m-2)},y,-y'',cr dots,(-1)^{n-1}y^{(2n-2)}), cr a_1 x^{(2i)}(0)-b_1 x^{(2i+1)}(0)=c_1x^{(2i)}(1)+d_1 x^{(2i+1)}(1)=0,cr a_2y^{(2j)}(0)-b_2y^{(2j+1)}(0)=c_2y^{(2j)}(1)+d_2y^{(2j+1)}(1)=0. }$$ The proofs of our main results are based on the Leggett-Williams fixed point theorem. Also, we give an example to illustrate our results. |
topic |
Singular generalized Lidstone problem positive solution cone concave functional |
url |
http://ejde.math.txstate.edu/Volumes/2009/163/abstr.html |
work_keys_str_mv |
AT jiafaxu threepositivesolutionsforasystemofsingulargeneralizedlidstoneproblems AT zhilinyang threepositivesolutionsforasystemofsingulargeneralizedlidstoneproblems |
_version_ |
1726009568421478400 |