Three positive solutions for a system of singular generalized Lidstone problems

In this article, we show the existence of at least three positive solutions for the system of singular generalized Lidstone boundary value problems $displaylines{ (-1)^m x^{(2m)}=a(t)f_1(t,x,-x'',dots,(-1)^{m-1}x^{(2m-2)},y,-y'',cr dots,(-1)^{n-1}y^{(2n-2)}), cr (-1)^n y^{(...

Full description

Bibliographic Details
Main Authors: Jiafa Xu, Zhilin Yang
Format: Article
Language:English
Published: Texas State University 2009-12-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2009/163/abstr.html
id doaj-65a77e8634c2446685a697973af841e1
record_format Article
spelling doaj-65a77e8634c2446685a697973af841e12020-11-24T21:18:22ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912009-12-012009163,19Three positive solutions for a system of singular generalized Lidstone problemsJiafa XuZhilin YangIn this article, we show the existence of at least three positive solutions for the system of singular generalized Lidstone boundary value problems $displaylines{ (-1)^m x^{(2m)}=a(t)f_1(t,x,-x'',dots,(-1)^{m-1}x^{(2m-2)},y,-y'',cr dots,(-1)^{n-1}y^{(2n-2)}), cr (-1)^n y^{(2n)}=b(t)f_2(t,x,-x'',dots,(-1)^{m-1}x^{(2m-2)},y,-y'',cr dots,(-1)^{n-1}y^{(2n-2)}), cr a_1 x^{(2i)}(0)-b_1 x^{(2i+1)}(0)=c_1x^{(2i)}(1)+d_1 x^{(2i+1)}(1)=0,cr a_2y^{(2j)}(0)-b_2y^{(2j+1)}(0)=c_2y^{(2j)}(1)+d_2y^{(2j+1)}(1)=0. }$$ The proofs of our main results are based on the Leggett-Williams fixed point theorem. Also, we give an example to illustrate our results. http://ejde.math.txstate.edu/Volumes/2009/163/abstr.htmlSingular generalized Lidstone problempositive solutionconeconcave functional
collection DOAJ
language English
format Article
sources DOAJ
author Jiafa Xu
Zhilin Yang
spellingShingle Jiafa Xu
Zhilin Yang
Three positive solutions for a system of singular generalized Lidstone problems
Electronic Journal of Differential Equations
Singular generalized Lidstone problem
positive solution
cone
concave functional
author_facet Jiafa Xu
Zhilin Yang
author_sort Jiafa Xu
title Three positive solutions for a system of singular generalized Lidstone problems
title_short Three positive solutions for a system of singular generalized Lidstone problems
title_full Three positive solutions for a system of singular generalized Lidstone problems
title_fullStr Three positive solutions for a system of singular generalized Lidstone problems
title_full_unstemmed Three positive solutions for a system of singular generalized Lidstone problems
title_sort three positive solutions for a system of singular generalized lidstone problems
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2009-12-01
description In this article, we show the existence of at least three positive solutions for the system of singular generalized Lidstone boundary value problems $displaylines{ (-1)^m x^{(2m)}=a(t)f_1(t,x,-x'',dots,(-1)^{m-1}x^{(2m-2)},y,-y'',cr dots,(-1)^{n-1}y^{(2n-2)}), cr (-1)^n y^{(2n)}=b(t)f_2(t,x,-x'',dots,(-1)^{m-1}x^{(2m-2)},y,-y'',cr dots,(-1)^{n-1}y^{(2n-2)}), cr a_1 x^{(2i)}(0)-b_1 x^{(2i+1)}(0)=c_1x^{(2i)}(1)+d_1 x^{(2i+1)}(1)=0,cr a_2y^{(2j)}(0)-b_2y^{(2j+1)}(0)=c_2y^{(2j)}(1)+d_2y^{(2j+1)}(1)=0. }$$ The proofs of our main results are based on the Leggett-Williams fixed point theorem. Also, we give an example to illustrate our results.
topic Singular generalized Lidstone problem
positive solution
cone
concave functional
url http://ejde.math.txstate.edu/Volumes/2009/163/abstr.html
work_keys_str_mv AT jiafaxu threepositivesolutionsforasystemofsingulargeneralizedlidstoneproblems
AT zhilinyang threepositivesolutionsforasystemofsingulargeneralizedlidstoneproblems
_version_ 1726009568421478400