Urinary 3-(3-Hydroxyphenyl)-3-hydroxypropionic Acid, 3-Hydroxyphenylacetic Acid, and 3-Hydroxyhippuric Acid Are Elevated in Children with Autism Spectrum Disorders

Autism spectrum disorders (ASDs) are a group of mental illnesses highly correlated with gut microbiota. Recent studies have shown that some abnormal aromatic metabolites in autism patients are presumably derived from overgrown Clostridium species in gut, which may be used for diagnostic purposes. In...

Full description

Bibliographic Details
Main Authors: Xiyue Xiong, Dan Liu, Yichao Wang, Ting Zeng, Ying Peng
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2016/9485412
Description
Summary:Autism spectrum disorders (ASDs) are a group of mental illnesses highly correlated with gut microbiota. Recent studies have shown that some abnormal aromatic metabolites in autism patients are presumably derived from overgrown Clostridium species in gut, which may be used for diagnostic purposes. In this paper, a GC/MS based metabolomic approach was utilized to seek similar biomarkers by analyzing the urinary information in 62 ASDs patients compared with 62 non-ASDs controls in China, aged 1.5–7. Three compounds identified as 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), 3-hydroxyphenylacetic acid (3HPA), and 3-hydroxyhippuric acid (3HHA) were found in higher concentrations in autistic children than in the controls (p<0.001). After oral vancomycin treatment, urinary excretion of HPHPA (p<0.001), 3HPA (p<0.005), and 3HHA (p<0.001) decreased markedly, which indicated that these compounds may also be from gut Clostridium species. The sensitivity and specificity of HPHPA, 3HPA, and 3HHA were evaluated by receiver-operating characteristic (ROC) analysis. The specificity of each compound for ASDs was very high (>96%). After two-regression analysis, the optimal area under the curve (AUC, 0.962), sensitivity (90.3%), and specificity (98.4%) were obtained by ROC curve of Prediction probability based on the three metabolites. These findings demonstrate that the measurements of the three compounds are strong predictors of ASDs and support the potential clinical utility for identifying a subgroup of ASDs subjects.
ISSN:2314-6133
2314-6141