Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies under Different Sludge Treatment Scenarios in China

With rapid urbanization and infrastructure investment, wastewater treatment plants (WWTPs) in Chinese cities are putting increased pressure on energy consumption and exacerbating greenhouse gas (GHG) emissions. A carbon footprint is provided as a tool to quantify the life cycle GHG emissions and id...

Full description

Bibliographic Details
Main Authors: Chunyan Chai, Dawei Zhang, Yanling Yu, Yujie Feng, Man Sing Wong
Format: Article
Language:English
Published: MDPI AG 2015-03-01
Series:Water
Subjects:
Online Access:http://www.mdpi.com/2073-4441/7/3/918
Description
Summary:With rapid urbanization and infrastructure investment, wastewater treatment plants (WWTPs) in Chinese cities are putting increased pressure on energy consumption and exacerbating greenhouse gas (GHG) emissions. A carbon footprint is provided as a tool to quantify the life cycle GHG emissions and identify opportunities to reduce climate change impacts. This study examined three mainstream wastewater treatment technologies: Anaerobic–Anoxic–Oxic (A–A–O), Sequencing Batch Reactor (SBR) and Oxygen Ditch, considering four different sludge treatment alternatives for small-to-medium-sized WWTPs. Following the life cycle approach, process design data and emission factors were used by the model to calculate the carbon footprint. Results found that direct emissions of CO2 and N2O, and indirect emissions of electricity use, are significant contributors to the carbon footprint. Although sludge anaerobic digestion and biogas recovery could significantly contribute to emission reduction, it was less beneficial for Oxygen Ditch than the other two treatment technologies due to its low sludge production. The influence of choosing “high risk” or “low risk” N2O emission factors on the carbon footprint was also investigated in this study. Oxygen Ditch was assessed as “low risk” of N2O emissions while SBR was “high risk”. The carbon footprint of A–A–O with sludge anaerobic digestion and energy recovery was more resilient to changes of N2O emission factors and control of N2O emissions, though process design parameters (i.e., effluent total nitrogen (TN) concentration, mixed-liquor recycle (MLR) rates and solids retention time (SRT)) and operation conditions (i.e., nitrite concentration) are critical for reducing carbon footprint of SBR. Analyses of carbon footprints suggested that aerobic treatment of sludge not only favors the generation of large amounts of CO2, but also the emissions of N2O, so the rationale of reducing aerobic treatment and maximizing anaerobic treatment applies to both wastewater and sludge treatment for reducing the carbon footprint, i.e., the annamox process for wastewater nutrient removal and the anaerobic digestion for sludge treatment.
ISSN:2073-4441