Approximation to Logarithmic-Cauchy Type Singular Integrals with Highly Oscillatory Kernels

In this paper, a fast and accurate numerical Clenshaw-Curtis quadrature is proposed for the approximation of highly oscillatory integrals with Cauchy and logarithmic singularities, <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>...

Full description

Bibliographic Details
Main Authors: SAIRA, Shuhuang Xiang
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/6/728
id doaj-658e4f05f4354ea5b3a3d1dd8e47d133
record_format Article
spelling doaj-658e4f05f4354ea5b3a3d1dd8e47d1332020-11-25T02:31:27ZengMDPI AGSymmetry2073-89942019-05-0111672810.3390/sym11060728sym11060728Approximation to Logarithmic-Cauchy Type Singular Integrals with Highly Oscillatory KernelsSAIRA0Shuhuang Xiang1School of Mathematics and Statistics, Central South University, Changsha 410083, ChinaSchool of Mathematics and Statistics, Central South University, Changsha 410083, ChinaIn this paper, a fast and accurate numerical Clenshaw-Curtis quadrature is proposed for the approximation of highly oscillatory integrals with Cauchy and logarithmic singularities, <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>⨍</mi> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <mfrac> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>log</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>&#8722;</mo> <mi>&#945;</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>k</mi> <mi>x</mi> </mrow> </msup> </mrow> <mrow> <mi>x</mi> <mo>&#8722;</mo> <mi>t</mi> </mrow> </mfrac> <mi>d</mi> <mi>x</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8713;</mo> <mo>(</mo> <mo>&#8722;</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> <mo>,</mo> <mi>&#945;</mi> <mo>&#8712;</mo> <mo>[</mo> <mo>&#8722;</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics> </math> </inline-formula> for a smooth function <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. This method consists of evaluation of the modified moments by stable recurrence relation and Cauchy kernel is solved by steepest descent method that transforms the oscillatory integral into the sum of line integrals. Later theoretical analysis and high accuracy of the method is illustrated by some examples.https://www.mdpi.com/2073-8994/11/6/728Clenshaw-Curtis quadraturesteepest descent methodlogarithmic singularitiesCauchy singularityhighly oscillatory integrals
collection DOAJ
language English
format Article
sources DOAJ
author SAIRA
Shuhuang Xiang
spellingShingle SAIRA
Shuhuang Xiang
Approximation to Logarithmic-Cauchy Type Singular Integrals with Highly Oscillatory Kernels
Symmetry
Clenshaw-Curtis quadrature
steepest descent method
logarithmic singularities
Cauchy singularity
highly oscillatory integrals
author_facet SAIRA
Shuhuang Xiang
author_sort SAIRA
title Approximation to Logarithmic-Cauchy Type Singular Integrals with Highly Oscillatory Kernels
title_short Approximation to Logarithmic-Cauchy Type Singular Integrals with Highly Oscillatory Kernels
title_full Approximation to Logarithmic-Cauchy Type Singular Integrals with Highly Oscillatory Kernels
title_fullStr Approximation to Logarithmic-Cauchy Type Singular Integrals with Highly Oscillatory Kernels
title_full_unstemmed Approximation to Logarithmic-Cauchy Type Singular Integrals with Highly Oscillatory Kernels
title_sort approximation to logarithmic-cauchy type singular integrals with highly oscillatory kernels
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2019-05-01
description In this paper, a fast and accurate numerical Clenshaw-Curtis quadrature is proposed for the approximation of highly oscillatory integrals with Cauchy and logarithmic singularities, <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>⨍</mi> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <mfrac> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>log</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>&#8722;</mo> <mi>&#945;</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>k</mi> <mi>x</mi> </mrow> </msup> </mrow> <mrow> <mi>x</mi> <mo>&#8722;</mo> <mi>t</mi> </mrow> </mfrac> <mi>d</mi> <mi>x</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8713;</mo> <mo>(</mo> <mo>&#8722;</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> <mo>,</mo> <mi>&#945;</mi> <mo>&#8712;</mo> <mo>[</mo> <mo>&#8722;</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics> </math> </inline-formula> for a smooth function <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. This method consists of evaluation of the modified moments by stable recurrence relation and Cauchy kernel is solved by steepest descent method that transforms the oscillatory integral into the sum of line integrals. Later theoretical analysis and high accuracy of the method is illustrated by some examples.
topic Clenshaw-Curtis quadrature
steepest descent method
logarithmic singularities
Cauchy singularity
highly oscillatory integrals
url https://www.mdpi.com/2073-8994/11/6/728
work_keys_str_mv AT saira approximationtologarithmiccauchytypesingularintegralswithhighlyoscillatorykernels
AT shuhuangxiang approximationtologarithmiccauchytypesingularintegralswithhighlyoscillatorykernels
_version_ 1724824440447959040