A Crank–Nicolson Finite Volume Element Method for Time Fractional Sobolev Equations on Triangular Grids

In this paper, a finite volume element (FVE) method is proposed for the time fractional Sobolev equations with the Caputo time fractional derivative. Based on the <inline-formula><math display="inline"><semantics><mrow><mi>L</mi><mn>1</mn><...

Full description

Bibliographic Details
Main Authors: Jie Zhao, Zhichao Fang, Hong Li, Yang Liu
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/9/1591
Description
Summary:In this paper, a finite volume element (FVE) method is proposed for the time fractional Sobolev equations with the Caputo time fractional derivative. Based on the <inline-formula><math display="inline"><semantics><mrow><mi>L</mi><mn>1</mn></mrow></semantics></math></inline-formula>-formula and the Crank–Nicolson scheme, a fully discrete Crank–Nicolson FVE scheme is established by using an interpolation operator <inline-formula><math display="inline"><semantics><msubsup><mi>I</mi><mi>h</mi><mo>*</mo></msubsup></semantics></math></inline-formula>. The unconditional stability result and the optimal a priori error estimate in the <inline-formula><math display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>(</mo><mo>Ω</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula>-norm for the Crank–Nicolson FVE scheme are obtained by using the direct recursive method. Finally, some numerical results are given to verify the time and space convergence accuracy, and to examine the feasibility and effectiveness for the proposed scheme.
ISSN:2227-7390