Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes

Climate and hydrology are relevant control factors determining the timing and amount of nutrient losses from land to downstream aquatic systems, in particular of phosphorus (P) from agricultural lands. The main objective of the study was to evaluate the differences in P export patterns and the perfo...

Full description

Bibliographic Details
Main Authors: G. Goyenola, M. Meerhoff, F. Teixeira-de Mello, I. González-Bergonzoni, D. Graeber, C. Fosalba, N. Vidal, N. Mazzeo, N. B. Ovesen, E. Jeppesen, B. Kronvang
Format: Article
Language:English
Published: Copernicus Publications 2015-10-01
Series:Hydrology and Earth System Sciences
Online Access:http://www.hydrol-earth-syst-sci.net/19/4099/2015/hess-19-4099-2015.pdf
id doaj-65668465fb104788a4fd15db24d19082
record_format Article
spelling doaj-65668465fb104788a4fd15db24d190822020-11-24T21:29:17ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382015-10-0119104099411110.5194/hess-19-4099-2015Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimesG. Goyenola0M. Meerhoff1F. Teixeira-de Mello2I. González-Bergonzoni3D. Graeber4C. Fosalba5N. Vidal6N. Mazzeo7N. B. Ovesen8E. Jeppesen9B. Kronvang10Departamento de Ecología Teórica y Aplicada, CURE-Facultad de Ciencias, Universidad de la República, Maldonado, UruguayDepartamento de Ecología Teórica y Aplicada, CURE-Facultad de Ciencias, Universidad de la República, Maldonado, UruguayDepartamento de Ecología Teórica y Aplicada, CURE-Facultad de Ciencias, Universidad de la República, Maldonado, UruguayDepartamento de Ecología Teórica y Aplicada, CURE-Facultad de Ciencias, Universidad de la República, Maldonado, UruguayDepartment of Bioscience and Arctic Research Centre, Aarhus University, Silkeborg, DenmarkDepartamento de Ecología Teórica y Aplicada, CURE-Facultad de Ciencias, Universidad de la República, Maldonado, UruguayDepartamento de Ecología Teórica y Aplicada, CURE-Facultad de Ciencias, Universidad de la República, Maldonado, UruguayDepartamento de Ecología Teórica y Aplicada, CURE-Facultad de Ciencias, Universidad de la República, Maldonado, UruguayDepartment of Bioscience and Arctic Research Centre, Aarhus University, Silkeborg, DenmarkDepartment of Bioscience and Arctic Research Centre, Aarhus University, Silkeborg, DenmarkDepartment of Bioscience and Arctic Research Centre, Aarhus University, Silkeborg, DenmarkClimate and hydrology are relevant control factors determining the timing and amount of nutrient losses from land to downstream aquatic systems, in particular of phosphorus (P) from agricultural lands. The main objective of the study was to evaluate the differences in P export patterns and the performance of alternative monitoring strategies in streams under contrasting climate-driven flow regimes. We compared a set of paired streams draining lowland micro-catchments under temperate climate and stable discharge conditions (Denmark) and under sub-tropical climate and flashy conditions (Uruguay). We applied two alternative nutrient sampling programs (high-frequency composite sampling and low-frequency instantaneous-grab sampling) and estimated the contribution derived from point and diffuse sources fitting a source apportionment model. We expected to detect a pattern of higher total and particulate phosphorus export from diffuse sources in streams in Uruguay streams, mostly as a consequence of higher variability in flow regime (higher flashiness). Contrarily, we found a higher contribution of dissolved P in flashy streams. We did not find a notably poorer performance of the low-frequency sampling program to estimate P exports in flashy streams compared to the less variable streams. We also found signs of interaction between climate/hydrology and land use intensity, in particular in the presence of point sources of P, leading to a bias towards underestimation of P in hydrologically stable streams and overestimation of P in flashy streams. Based on our findings, we suggest that the evaluation and use of more accurate monitoring methods, such as automatized flow-proportional water samplers and automatized bankside analyzers, should be prioritized whenever logistically possible. However, it seems particularly relevant in currently flashy systems and also in systems where climate change predictions suggest an increase in stream flashiness.http://www.hydrol-earth-syst-sci.net/19/4099/2015/hess-19-4099-2015.pdf
collection DOAJ
language English
format Article
sources DOAJ
author G. Goyenola
M. Meerhoff
F. Teixeira-de Mello
I. González-Bergonzoni
D. Graeber
C. Fosalba
N. Vidal
N. Mazzeo
N. B. Ovesen
E. Jeppesen
B. Kronvang
spellingShingle G. Goyenola
M. Meerhoff
F. Teixeira-de Mello
I. González-Bergonzoni
D. Graeber
C. Fosalba
N. Vidal
N. Mazzeo
N. B. Ovesen
E. Jeppesen
B. Kronvang
Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes
Hydrology and Earth System Sciences
author_facet G. Goyenola
M. Meerhoff
F. Teixeira-de Mello
I. González-Bergonzoni
D. Graeber
C. Fosalba
N. Vidal
N. Mazzeo
N. B. Ovesen
E. Jeppesen
B. Kronvang
author_sort G. Goyenola
title Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes
title_short Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes
title_full Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes
title_fullStr Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes
title_full_unstemmed Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes
title_sort monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes
publisher Copernicus Publications
series Hydrology and Earth System Sciences
issn 1027-5606
1607-7938
publishDate 2015-10-01
description Climate and hydrology are relevant control factors determining the timing and amount of nutrient losses from land to downstream aquatic systems, in particular of phosphorus (P) from agricultural lands. The main objective of the study was to evaluate the differences in P export patterns and the performance of alternative monitoring strategies in streams under contrasting climate-driven flow regimes. We compared a set of paired streams draining lowland micro-catchments under temperate climate and stable discharge conditions (Denmark) and under sub-tropical climate and flashy conditions (Uruguay). We applied two alternative nutrient sampling programs (high-frequency composite sampling and low-frequency instantaneous-grab sampling) and estimated the contribution derived from point and diffuse sources fitting a source apportionment model. We expected to detect a pattern of higher total and particulate phosphorus export from diffuse sources in streams in Uruguay streams, mostly as a consequence of higher variability in flow regime (higher flashiness). Contrarily, we found a higher contribution of dissolved P in flashy streams. We did not find a notably poorer performance of the low-frequency sampling program to estimate P exports in flashy streams compared to the less variable streams. We also found signs of interaction between climate/hydrology and land use intensity, in particular in the presence of point sources of P, leading to a bias towards underestimation of P in hydrologically stable streams and overestimation of P in flashy streams. Based on our findings, we suggest that the evaluation and use of more accurate monitoring methods, such as automatized flow-proportional water samplers and automatized bankside analyzers, should be prioritized whenever logistically possible. However, it seems particularly relevant in currently flashy systems and also in systems where climate change predictions suggest an increase in stream flashiness.
url http://www.hydrol-earth-syst-sci.net/19/4099/2015/hess-19-4099-2015.pdf
work_keys_str_mv AT ggoyenola monitoringstrategiesofstreamphosphorusundercontrastingclimatedrivenflowregimes
AT mmeerhoff monitoringstrategiesofstreamphosphorusundercontrastingclimatedrivenflowregimes
AT fteixeirademello monitoringstrategiesofstreamphosphorusundercontrastingclimatedrivenflowregimes
AT igonzalezbergonzoni monitoringstrategiesofstreamphosphorusundercontrastingclimatedrivenflowregimes
AT dgraeber monitoringstrategiesofstreamphosphorusundercontrastingclimatedrivenflowregimes
AT cfosalba monitoringstrategiesofstreamphosphorusundercontrastingclimatedrivenflowregimes
AT nvidal monitoringstrategiesofstreamphosphorusundercontrastingclimatedrivenflowregimes
AT nmazzeo monitoringstrategiesofstreamphosphorusundercontrastingclimatedrivenflowregimes
AT nbovesen monitoringstrategiesofstreamphosphorusundercontrastingclimatedrivenflowregimes
AT ejeppesen monitoringstrategiesofstreamphosphorusundercontrastingclimatedrivenflowregimes
AT bkronvang monitoringstrategiesofstreamphosphorusundercontrastingclimatedrivenflowregimes
_version_ 1725966378921361408