Summary: | Soil’s microbiological settlement in a Zea mays parcel under long-term agricultural practices aiming to minimize the disruption of the soil’s structure, composition and natural biodiversity was analyzed by culture-dependent and culture-independent processes. Of the different processes, morphological-type differentiation of cultured microflora produced the best results and, while Polymerase Chain Reaction (PCR)-agarose electrophoresis has also provided us with reliable ones, soil PCR-DGGE (Denaturing Gradient Gel Electrophoresis) did not, which may occur because of the dependence of the method on the practice. Over a three-year period, this soil seemed very stable as its C/N ratio remained roughly constant and available for microbial growth. Because no soil overturning occurred, we were able to maintain most of the cultured microbial population whose fluctuations depended only on edaphoclimatic conditions. The number of cultured bacteria, molds, total microorganisms, and the biodiversity indices were usually lower in the driest season (fall) than in the rest of the year, except for Acinetobacter and Stenotrophomonas, which showed the opposite behavior. Coincident with the rise in temperature during the summer, the relative abundance of Gram+ bacteria increased, mostly reflecting an increase in the spore-forming bacteria Streptomyces and Bacillus. Despite these variations, the evenness index and the quantity of distinct microbiological life remained practically unaltered, recovering their maximum levels when the proper edaphoclimatic conditions were present, which indicates the long-term stability of the microbial community in this soil. The performed study put forward important insights for assessing the sustainability of maize production under long-term conservation agriculture management systems, highlighting that adequate management might prevent the degradation of soil quality, thus contributing to promote sustainable agriculture.
|