Open effective theory of scalar field in rotating plasma

Abstract We study the effective dynamics of an open scalar field interacting with a strongly-coupled two-dimensional rotating CFT plasma. The effective theory is determined by the real-time correlation functions of the thermal plasma. We employ holographic Schwinger-Keldysh path integral techniques...

Full description

Bibliographic Details
Main Authors: Bidisha Chakrabarty, P. M. Aswin
Format: Article
Language:English
Published: SpringerOpen 2021-08-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP08(2021)169
Description
Summary:Abstract We study the effective dynamics of an open scalar field interacting with a strongly-coupled two-dimensional rotating CFT plasma. The effective theory is determined by the real-time correlation functions of the thermal plasma. We employ holographic Schwinger-Keldysh path integral techniques to compute the effective theory. The quadratic effective theory computed using holography leads to the linear Langevin dynamics with rotation. The noise and dissipation terms in this equation get related by the fluctuation-dissipation relation in presence of chemical potential due to angular momentum. We further compute higher order terms in the effective theory of the open scalar field. At quartic order, we explicitly compute the coefficient functions that appear in front of various terms in the effective action in the limit when the background plasma is slowly rotating. The higher order effective theory has a description in terms of the non-linear Langevin equation with non-Gaussianity in the thermal noise.
ISSN:1029-8479